
Sylius

May 07, 2019

Contents

1 The Book 3
1.1 The Book . 5

2 The Customization Guide 91
2.1 The Customization Guide . 91

3 Sylius Plugins 135
3.1 Sylius Plugins . 135

4 The Cookbook 149
4.1 The Cookbook . 149

5 The REST API Reference 247
5.1 The REST API Reference . 247

6 The BDD Guide 497
6.1 The BDD Guide . 497

7 The Contribution Guide 515
7.1 The Contribution Guide . 515

8 Support 547
8.1 Support . 547

9 Components & Bundles 549
9.1 Components & Bundles . 549

i

ii

Sylius

Sylius is a modern e-commerce solution for PHP, based on Symfony Framework.

Note: This documentation assumes you have a working knowledge of the Symfony Framework. If you’re not familiar
with Symfony, please start with reading the Quick Tour from the Symfony documentation.

Tip: The Book, Customization Guide, REST API Reference, Cookbook, Contribution Guide and Behat Guide
are chapters describing the usage of the whole Sylius platform, on the examples for Sylius-Standard distribution.

For tips on using only some bundles of Sylius head to Bundles and Components docs.

Contents 1

http://sylius.com
http://symfony.com
http://symfony.com/doc/current/quick_tour

Sylius

2 Contents

CHAPTER 1

The Book

The Developer’s guide to leveraging the flexibility of Sylius. Here you will find all the concepts used in the Sylius
platform. The Book helps to understand how Sylius works.

3

http://docs.sylius.com/en/latest/book/introduction/index.html
http://docs.sylius.com/en/latest/book/installation/index.html

Sylius

4 Chapter 1. The Book

http://docs.sylius.com/en/latest/book/architecture/index.html
http://docs.sylius.com/en/latest/book/configuration/index.html
http://docs.sylius.com/en/latest/book/customers/index.html
http://docs.sylius.com/en/latest/book/products/index.html

Sylius

1.1 The Book

The Developer’s guide to leveraging the flexibility of Sylius. Here you will find all the concepts used in Sylius. The
Books helps to understand how Sylius works.

1.1.1 Introduction

Introduction aims to describe the philosophy of Sylius. It will also teach you about environments before you start
installing it.

Introduction

This is the beginning of the journey with Sylius. We will start with a basic insight into terms that we use in Sylius
Documentation.

Introduction to Sylius

Sylius is a game-changing e-commerce solution for PHP, based on the Symfony framework.

Philosophy

Sylius is completely open source (MIT license) and free, maintained by a diverse and creative community of developers
and companies.

What are our core values and what makes us different from other solutions?

• Components based approach

1.1. The Book 5

http://docs.sylius.com/en/latest/book/orders/index.html
http://docs.sylius.com/en/latest/book/themes/index.html

Sylius

• Unlimited flexibility and simple customization

• Developer-friendly, using latest technologies

• Developed using best practices and BDD approach

• Highest quality of code

And much more, but we will let you discover it yourself.

The Three Natures of Sylius

Sylius is constructed from fully decoupled and flexible e-commerce components for PHP. It is also a set of Symfony
bundles, which integrate the components into the full-stack framework. On top of that, Sylius is also a complete
e-commerce platform crafted from all these building blocks.

It is your choice how to use Sylius, you can benefit from the components with any framework, integrate selected
bundles into existing or new Symfony app or built your application on top of Sylius platform.

Sylius Platform

This book is about our full-stack e-commerce platform, which is a standard Symfony application providing the most
common webshop and a foundation for custom systems.

Leveraging Symfony Bundles

If you prefer to build your very custom system step by step and from scratch, you can integrate the standalone Symfony
bundles. For the installation instructions, please refer to the appropriate bundle documentation.

E-Commerce Components for PHP

If you use a different framework than Symfony, you are welcome to use Sylius components, which will make it much
easier to implement a webshop with any PHP application and project. They provide you with default models, services
and logic for all aspects of e-commerce, completely separated and ready to use.

Final Thoughts

Depending on how you want to use Sylius, continue reading The Book, which covers the usage of the full stack
solution, browse the Bundles Reference or learn about The Components.

Understanding Environments

Every Sylius application is the combination of code and a set of configuration that dictates how that code should
function. The configuration may define the database being used, whether or not something should be cached, or how
verbose logging should be. In Symfony, the idea of “environments” is the idea that the same codebase can be run using
multiple different configurations. For example, the dev environment should use configuration that makes development
easy and friendly, while the prod environment should use a set of configuration optimized for speed.

6 Chapter 1. The Book

https://scrutinizer-ci.com/g/Sylius/Sylius/

Sylius

Development

Development environment or dev, as the name suggests, should be used for development purposes. It is much slower
than production, because it uses much less aggressive caching and does a lot of processing on every request. However,
it allows you to add new features or fix bugs quickly, without worrying about clearing the cache after every change.

Sylius console runs in dev environment by default. You can access the website in dev mode via the /app_dev.php
file in the web/ directory. (under your website root)

Production

Production environment or prod is your live website environment. It uses proper caching and is much faster than
other environments. It uses live APIs and sends out all e-mails.

To run Sylius console in prod environment, add the following parameters to every command call:

$ bin/console --env=prod --no-debug cache:clear

You can access the website in production mode via the /app.php file in your website root (web/) or just / path.
(on Apache)

Staging

Staging environment or staging is the last line before the shop will go to the production. Here you should test all
new features to ensure that everything works as expected. It’s almost an exact copy of production environment but
with different database and turned off e-mails.

To run Sylius console in staging environment, add the following parameters to every command call:

$ bin/console --env=staging --no-debug cache:clear

You can access the website in staging mode via the /app_staging.php file in your website root (web/) or just /
path. (on Apache)

Test

Test environment or test is used for automated testing. Most of the time you will not access it directly.

To run Sylius console in test environment, add the following parameters to every command call:

$ bin/console --env=test cache:clear

Final Thoughts

You can read more about Symfony environments in this cookbook article.

• Introduction to Sylius

• Understanding Environments

• Introduction to Sylius

• Understanding Environments

1.1. The Book 7

http://symfony.com/doc/current/cookbook/configuration/environments.html

Sylius

1.1.2 Installation

The installation chapter is of course a comprehensive guide to installing Sylius on your machine, but it also provides
a general instruction on upgrading Sylius in your project.

Installation

The process of installing Sylius together with the requirements to run it efficiently.

System Requirements

Here you will find the list of system requirements that have to be adhered to be able to use Sylius. First of all have a
look at the requirements for running Symfony.

Read about the LAMP stack and the MAMP stack.

Operating Systems

The recommended operating systems for running Sylius are the Unix systems - Linux, MacOS.

Web server and configuration

In the production environment we do recommend using Apache web server 2.2.

While developing the recommended way to work with your Symfony application is to use PHP’s built-in web server.

Go there to see the full reference to the web server configuration.

PHP required modules and configuration

PHP version:

PHP ^7.1

PHP extensions:

gd No specific configuration
exif No specific configuration
fileinfo No specific configuration
intl No specific configuration

PHP configuration settings:

memory_limit 1024M
date.timezone Europe/Warsaw

Warning: Use your local timezone, for example America/Los_Angeles or Europe/Berlin. See http://php.net/
manual/en/timezones.php for the list of all available timezones.

8 Chapter 1. The Book

http://symfony.com/doc/current/reference/requirements.html
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://en.wikipedia.org/wiki/MAMP
http://symfony.com/doc/current/cookbook/configuration/web_server_configuration.html
http://php.net/manual/en/book.fileinfo.php
http://php.net/manual/en/book.exif.php
http://php.net/manual/en/book.fileinfo.php
http://php.net/manual/en/book.intl.php
http://php.net/manual/en/timezones.php
http://php.net/manual/en/timezones.php

Sylius

Database

By default, the database connection is pre-configured to work with a following MySQL configuration:

MySQL 5.x

Note: Of course you may use any other RDBMS for instance PostgreSQL.

Access rights

Most of the application folders and files require only read access, but a few folders need also the write access for the
Apache/Nginx user:

• var/cache

• var/logs

• web/media

You can read how to set these permissions in the Symfony - setting up permissions section.

Installation

The Sylius main application can serve as an end-user app, as well as a foundation for your custom e-commerce
application.

Warning: This article assumes you’re familiar with Composer, a dependency manager for PHP. It also assumes
you have Composer installed globally.

Note: If you downloaded the Composer phar archive, you should use php composer.phar where this guide uses
composer.

Tip: If you prefer to work with Vagrant head to this guide.

Initiating A New Sylius Project

To create a new project using Sylius Standard Edition, run this command:

$ composer create-project sylius/sylius-standard acme

Note: Make sure to use PHP ^7.1. Using an older PHP version will result in installing an older version of Sylius.

1.1. The Book 9

http://symfony.com/doc/current/setup/file_permissions.html
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally

Sylius

This will create a new Symfony project in acme directory. When all the dependencies are installed, you’ll be asked
to fill the parameters.yml file via interactive script. Please follow the steps. After everything is in place, run the
following commands:

$ cd acme # Move to the newly created directory
$ php bin/console sylius:install

This package has the whole sylius/sylius package in vendors, so you can easily update it and focus on your
custom development.

Warning: During the sylius:install command you will be asked to provide important information, but
also its execution ensures that the default currency (USD) and the default locale (English - US) are set they can
be later on changed in the parameters.yml file. From now on all the prices will be stored in the database in
USD as integers, and all the products will have to be added with a base american english name translation.

Installing assets

In order to see a fully functional frontend you will need to install its assets.

Sylius already has a Gulpfile.js, therefore you just need to get Gulp using Yarn.

Note: We recommend using stable versions (^1.0.0) of Yarn.

Having Yarn installed go to your project directory and run:

$ yarn install

And now you can use gulp for installing views, by just running a simple command:

$ yarn run gulp

Although if you have Gulp installed globally then run just:

$ gulp

Accessing the Shop

Tip: We strongly recommend using the Symfony built-in web server by running the php bin/console
server:start 127.0.0.1:8000 command and then accessing http://127.0.0.1:8000 in your web
browser to see the shop.

Note: The localhost’s 8000 port may be already occupied by some other process. If so you should try other ports,
like for instance: php bin/console server:start 127.0.0.1:8081 Want to know more about using a
built-in server, see here.

You can log in as an administrator, with the credentials you have provided during the installation process. Since now
you can play with your clean Sylius installation.

10 Chapter 1. The Book

http://gulpjs.com/
https://yarnpkg.com/lang/en/
https://yarnpkg.com/lang/en/
http://symfony.com/doc/current/cookbook/web_server/built_in.html

Sylius

Accessing the Administration Panel

Note: Have a look at the /admin url, where you will find the administration panel. Remember that you have to be
logged in as an administrator using the credentials provided while installing Sylius.

How to start developing? - Project Structure

After you have successfully gone through the installation process of Sylius-Standard you are probably going to start
developing within the framework of Sylius.

In the root directory of your project you will find these important subdirectories:

• app/config/ - here you will be adding the yaml configuration files including routing, security, state machines
configurations etc.

• var/logs/ - these are the logs of your application

• var/cache/ - this is the cache of you project

• src/ - this is where you will be adding all you custom logic in the AppBundle

• web/ - there you will be placing assets of your project

Tip: As it was mentioned before we are basing on Symfony, that is why we’ve adopted its approach to architecture.
Read more in the Symfony documentation. Read also about the best practices while structuring your project.

Contributing

Tip: If you would like to contribute to Sylius - please go to the Contribution Guide

Sylius installation via Vagrant

Warning: This article assumes you’re familiar with Composer, a dependency manager for PHP. It also assumes
you have Composer installed globally. Basic knowledge about Vagrant is also required, and of course installed
Vagrant.

What’s Vagrant?

Vagrant is a tool for building complete development environments, that in case of Sylius will help you to quickly have
full application running on your machine.

Tip: Learn more about Vagrant. Vagrant installation info.

1.1. The Book 11

http://symfony.com/doc/current/quick_tour/the_architecture.html
http://symfony.com/doc/current/best_practices/creating-the-project.html#structuring-the-application
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally
https://www.vagrantup.com/about.html
https://www.vagrantup.com/docs/installation/
https://www.vagrantup.com/docs/installation/
https://www.vagrantup.com/about.html
https://www.vagrantup.com/docs/installation/

Sylius

How to install Sylius using Vagrant?

2. Clone the Sylius/Vagrant repository into the /sylius/ directory:

$ git clone git@github.com:Sylius/Vagrant.git sylius

3. Move to the /sylius/ directory and build Vagrant:

$ cd sylius
$ vagrant up

4. Add an entry for sylius.test to the etc/hosts file:

etc/hosts
10.0.0.200 sylius.test www.sylius.test

From now on you will be able to access running Sylius application at http://sylius.test/app_dev.php.

Upgrading

Sylius is releasing new versions from time to time. Each release is supported with an UPGRADE file, which is meant
to help in the upgrading process, especially for the major versions, which can break the backwards compatibility.

Update the Sylius library version constraint by modifying the composer.json file:

{
...

"require": {
"...": "...",

"sylius/sylius": "^1.0@beta",

"...": "...",
},

...
}

Then run composer update command:

$ composer update sylius/sylius

If this results in a dependency error, it may mean that other Sylius dependencies also have to be upgraded. Using this
command may help you upgrade Sylius dependencies.

$ composer update sylius/sylius --with-dependencies

If this does not help, it is a matter of debugging the conflicting versions and working out how your composer.json
should look after the upgrade.

Finally to make everything work check the UPGRADE file of Sylius for instructions.

One more important thing is running the database migrations:

$ bin/console doctrine:migrations:migrate

12 Chapter 1. The Book

https://github.com/Sylius/Vagrant
https://github.com/Sylius/Sylius/blob/1.0/UPGRADE-1.0.md

Sylius

Tip: Check if the migrations (more than 1) are in your app/migrations directory. If not, then replace the contents
of this directory with the migrations from the vendor/sylius/sylius/app/migrations/ directory.

After fixing the project according to the upgrade and having run the migrations you are done!

• System Requirements

• Installation

• Sylius installation via Vagrant

• Upgrading

• System Requirements

• Installation

• Sylius installation via Vagrant

• Upgrading

1.1.3 Architecture

The key to understanding principles of Sylius internal organization. Here you will learn about the Resource layer, state
machines, events and general non e-commerce concepts adopted in the platform, like E-mails or Fixtures.

Architecture

Before we dive separately into every Sylius concept, you need to have an overview of how our main application is
structured. In this chapter we will sketch this architecture and our basic, cornerstone concepts, but also some supportive
approaches, that you need to notice.

Architecture Overview

Before we dive separately into every Sylius concept, you need to have an overview of how our main application is
structured. You already know that Sylius is built from components and Symfony bundles, which are integration layers
with the framework.

All bundles share the same conventions for naming things and the way of data persistence. Sylius, by default, uses the
Doctrine ORM for managing all entities.

For deeper understanding of how Doctrine works, please refer to the excellent documentation on their official website.

Fullstack Symfony

Sylius is based on Symfony, which is a leading PHP framework to create web applications. Using Symfony allows
developers to work better and faster by providing them with certainty of developing an application that is fully compat-
ible with the business rules, that is structured, maintainable and upgradable, but also it allows to save time by providing
generic re-usable modules.

Learn more about Symfony.

1.1. The Book 13

http://doctrine-orm.readthedocs.org/en/latest/
http://symfony.com/what-is-symfony

Sylius

Doctrine

Doctrine is a family of PHP libraries focused on providing data persistence layer. The most important are the object-
relational mapper (ORM) and the database abstraction layer (DBAL). One of Doctrine’s key features is the possibility
to write database queries in Doctrine Query Language (DQL) - an object-oriented dialect of SQL.

To learn more about Doctrine - see their documentation.

Twig

Twig is a modern template engine for PHP that is really fast, secure and flexible. Twig is being used by Symfony.

To read more about Twig, go here.

Architecture

On the below image you can see the symbolic representation of Sylius architecture.

14 Chapter 1. The Book

http://www.doctrine-project.org/about.html
http://twig.sensiolabs.org/

Sylius

Keep on reading this chapter to learn more about each of its parts: Shop, Admin, API, Core, Components and Bundles.

Division into Components, Bundles, Platform

Components

Every single component of Sylius can be used standalone. Taking the Taxation component as an example, its only
responsibility is to calculate taxes, it does not matter whether these will be taxes for products or anything else, it is
fully decoupled. In order to let the Taxation component operate on your objects you need to have them implementing
the TaxableInterface. Since then they can have taxes calculated. Such approach is true for every component of

1.1. The Book 15

Sylius

Sylius. Besides components that are strictly connected to the e-commerce needs, we have plenty of components that
are more general. For instance Attribute, Mailer, Locale etc.

All the components are packages available via Packagist.

Read more about the Components.

Bundles

These are the Symfony Bundles - therefore if you are a Symfony Developer, and you would like to use the Taxation
component in your system, but you do not want to spend time on configuring forms or services in the container. You
can include the TaxationBundle in your application with minimal or even no configuration to have access to all
the services, models, configure tax rates, tax categories and use that for any taxes you will need.

Read more about the Bundles.

Platform

This is a fullstack Symfony Application, based on Symfony Standard. Sylius Platform gives you the classic, quite
feature rich webshop. Before you start using Sylius you will need to decide whether you will need a full platform
with all the features we provide, or maybe you will use decoupled bundles and components to build something very
custom, maybe smaller, with different features. But of course the platform itself is highly flexible and can be easily
customized to meet all business requirements you may have.

Division into Core, Admin, Shop, Api

Core

The Core is another component that integrates all the other components. This is the place where for exam-
ple the ProductVariant finally learns that it has a TaxCategory. The Core component is where the
ProductVariant implements the TaxableInterface and other interfaces that are useful for its operation.
Sylius has here a fully integrated concept of everything that is needed to run a webshop. To get to know more about
concepts applied in Sylius - keep on reading The Book.

Admin

In every system with the security layer the functionalities of system administration need to be restricted to only some
users with a certain role - Administrator. This is the responsibility of our AdminBundle although if you do not need
it, you can turn it off. Views have been built using the SemanticUI.

Shop

Our ShopBundle is basically a standard B2C interface for everything that happens in the system. It is made mainly
of yaml configurations and templates. Also here views have been built using the SemanticUI.

16 Chapter 1. The Book

https://packagist.org/
http://semantic-ui.com/
http://semantic-ui.com/

Sylius

Api

Our API uses the REST approach. Since our controllers are format agnostic they have become reusable in the API.
Therefore if you request products in the shop frontend you are using exactly the same action as when you are placing
the api request. Read more about our API in the Sylius API Guide.

Third Party Libraries

Sylius uses a lot of libraries for various tasks:

• Payum for payments

• KnpMenu - for shop and admin menus

• Gaufrette for filesystem abstraction (store images locally, Amazon S3 or external server)

• Imagine for images processing, generating thumbnails and cropping

• Pagerfanta for pagination

• Winzou State Machine - for the state machines handling

Resource Layer

We created an abstraction on top of Doctrine, in order to have a consistent and flexible way to manage all the resources.
By “resource” we understand every model in the application. Simplest examples of Sylius resources are “product”,
“order”, “tax_category”, “promotion”, “user”, “shipping_method” and so on. . .

There are two types of resources in Sylius:

• registered by default - their names begin with sylius.* for example: sylius.product

• custom resources, from your application which have a separate convention. We place them under
sylius_resource: resource_name: in the config.yml. For these we recommend using the naming
convention of app.* for instance app.my_entity.

Sylius resource management system lives in the SyliusResourceBundle and can be used in any Symfony project.

Services

For every resource you have four essential services available:

• Factory

• Manager

• Repository

• Controller

Let us take the “product” resource as an example. By default, it is represented by an object of a class that implements
the Sylius\Component\Core\Model\ProductInterface.

Factory

The factory service gives you an ability to create new default objects. It can be accessed via the sylius.factory.product
id (for the Product resource of course).

1.1. The Book 17

https://github.com/Payum/Payum
http://symfony.com/doc/current/bundles/KnpMenuBundle/index.html
https://github.com/KnpLabs/Gaufrette
https://github.com/liip/LiipImagineBundle
https://github.com/whiteoctober/Pagerfanta
https://github.com/winzou/StateMachineBundle

Sylius

<?php

public function myAction()
{

$factory = $this->container->get('sylius.factory.product');

/** @var ProductInterface $product **/
$product = $factory->createNew();

}

Note: Creating resources via this factory method makes the code more testable, and allows you to change the model
class easily.

Manager

The manager service is just an alias to appropriate Doctrine’s ObjectManager and can be accessed via the
sylius.manager.product id. API is exactly the same and you are probably already familiar with it:

<?php

public function myAction()
{

$manager = $this->container->get('sylius.manager.product');

// Assuming that the $product1 exists in the database we can perform such
→˓operations:

$manager->remove($product1);

// If we have created the $product2 using a factory, we can persist it in the
→˓database.

$manager->persist($product2);

// Before performing a flush, the changes we have made, are not saved. There is
→˓only the $product1 in the database.

$manager->flush(); // Saves changes in the database.

//After these operations we have only $product2 in the database. The $product1
→˓has been removed.
}

Repository

Repository is defined as a service for every resource and shares the API with standard Doctrine ObjectRepository. It
contains two additional methods for creating a new object instance and a paginator provider.

The repository service is available via the sylius.repository.product id and can be used like all the repositories you
have seen before.

<?php

public function myAction()
{

(continues on next page)

18 Chapter 1. The Book

http://www.doctrine-project.org/api/common/2.4/class-Doctrine.Common.Persistence.ObjectManager.html

Sylius

(continued from previous page)

$repository = $this->container->get('sylius.repository.product');

$product = $repository->find(4); // Get product with id 4, returns null if not
→˓found.

$product = $repository->findOneBy(['slug' => 'my-super-product']); // Get one
→˓product by defined criteria.

$products = $repository->findAll(); // Load all the products!
$products = $repository->findBy(['special' => true]); // Find products matching

→˓some custom criteria.
}

Tip: An important feature of the repositories are the add($resource) and remove($resource) methods,
which take a resource as an argument and perform the adding/removing action with a flush inside.

These actions can be used when the performance of operations may be neglected. If you are willing to perform
operations on sets of data we are suggesting to use the manager instead.

Every Sylius repository supports paginating resources. To create a Pagerfanta instance use the createPaginator
method:

<?php

public function myAction(Request $request)
{

$repository = $this->container->get('sylius.repository.product');

$products = $repository->createPaginator();
$products->setMaxPerPage(3);
$products->setCurrentPage($request->query->get('page', 1));

// Now you can return products to template and iterate over it to get products
→˓from current page.
}

Paginator can be created for a specific criteria and with desired sorting:

<?php

public function myAction(Request $request)
{

$repository = $this->container->get('sylius.repository.product');

$products = $repository->createPaginator(['foo' => true], ['createdAt' => 'desc
→˓']);

$products->setMaxPerPage(3);
$products->setCurrentPage($request->query->get('page', 1));

}

Controller

This service is the most important for every resource and provides a format agnostic CRUD controller with the fol-
lowing actions:

1.1. The Book 19

https://github.com/whiteoctober/Pagerfanta

Sylius

• [GET] showAction() for getting a single resource

• [GET] indexAction() for retrieving a collection of resources

• [GET/POST] createAction() for creating new resource

• [GET/PUT] updateAction() for updating an existing resource

• [DELETE] deleteAction() for removing an existing resource

As you see, these actions match the common operations in any REST API and yes, they are format agnostic. This
means, all Sylius controllers can serve HTML, JSON or XML, depending on what you request.

Additionally, all these actions are very flexible and allow you to use different templates, forms, repository methods
per route. The bundle is very powerful and allows you to register your own resources as well. To give you some idea
of what is possible, here are some examples!

Displaying a resource with a custom template and repository methods:

routing.yml
app_product_show:

path: /products/{slug}
methods: [GET]
defaults:

_controller: sylius.controller.product:showAction
_sylius:

template: AppStoreBundle:Product:show.html.twig # Use a custom template.
repository:

method: findForStore # Use a custom repository method.
arguments: [$slug] # Pass the slug from the url to the repository.

Creating a product using custom form and a redirection method:

routing.yml
app_product_create:

path: /my-stores/{store}/products/new
methods: [GET, POST]
defaults:

_controller: sylius.controller.product:createAction
_sylius:

form: AppStoreBundle/Form/Type/CustomFormType # Use this form type!
template: AppStoreBundle:Product:create.html.twig # Use a custom template.
factory:

method: createForStore # Use a custom factory method to create a
→˓product.

arguments: [$store] # Pass the store name from the url.
redirect:

route: app_product_index # Redirect the user to their products.
parameters: [$store]

All other methods have the same level of flexibility and are documented in the Resource Bundle Guide.

State Machine

In Sylius we are using the Winzou StateMachine Bundle. State Machines are an approach to handling changes occur-
ring in the system frequently, that is extremely flexible and very well organised.

Every state machine will have a predefined set of states, that will be stored on an entity that is being controlled by it.
These states will have a set of defined transitions between them, and a set of callbacks - a kind of events, that will
happen on defined transitions.

20 Chapter 1. The Book

https://github.com/winzou/StateMachineBundle

Sylius

States

States of a state machine are defined as constants on the model of an entity that the state machine is controlling.

How to configure states? Let’s see on the example from Checkout state machine.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state_machine:

sylius_order_checkout:
list of all possible states:
states:

cart: ~
addressed: ~
shipping_selected: ~
payment_selected: ~
completed: ~

Transitions

On the graph it would be the connection between two states, defining that you can move from one state to another
subsequently.

How to configure transitions? Let’s see on the example of our Checkout state machine. Having states configured we
can have a transition between the cart state to the addressed state.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state_machine:

sylius_order_checkout:
transitions:

address:
from: [cart, addressed, shipping_selected, payment_selected] # here

→˓you specify which state is the initial
to: addressed # there

→˓you specify which state is final for that transition

Callbacks

Callbacks are used to execute some code before or after applying transitions. Winzou StateMachineBundle adds the
ability to use Symfony services in the callbacks.

How to configure callbacks? Having a configured transition, you can attach a callback to it either before or after the
transition. Callback is simply a method of a service you want to be executed.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state_machine:

sylius_order_checkout:
callbacks:

callbacks may be called before or after specified transitions, in
→˓the checkout state machine we've got callbacks only after transitions

after:
sylius_process_cart:

on: ["address", "select_shipping", "select_payment"]
do: ["@sylius.order_processing.order_processor", "process"]
args: ["object"]

1.1. The Book 21

Sylius

Configuration

In order to use a state machine, you have to define a graph beforehand. A graph is a definition of states, transitions
and optionally callbacks - all attached on an object from your domain. Multiple graphs may be attached to the same
object.

In Sylius the best example of a state machine is the one from checkout. It has five states available: cart,
addressed, shipping_selected, payment_selected and completed - which can be achieved by apply-
ing some transitions to the entity. For example, when selecting a shipping method during the shipping step of checkout
we should apply the select_shipping transition, and after that the state would become shipping_selected.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state_machine:

sylius_order_checkout:
class: "%sylius.model.order.class%" # class of the domain object - in our

→˓case Order
property_path: checkoutState
graph: sylius_order_checkout
state_machine_class: "%sylius.state_machine.class%"
list of all possible states:
states:

cart: ~
addressed: ~
shipping_selected: ~
payment_selected: ~
completed: ~

list of all possible transitions:
transitions:

address:
from: [cart, addressed, shipping_selected, payment_selected] # here

→˓you specify which state is the initial
to: addressed # there

→˓you specify which state is final for that transition
select_shipping:

from: [addressed, shipping_selected, payment_selected]
to: shipping_selected

select_payment:
from: [payment_selected, shipping_selected]
to: payment_selected

complete:
from: [payment_selected]
to: completed

list of all callbacks:
callbacks:
callbacks may be called before or after specified transitions, in the

→˓checkout state machine we've got callbacks only after transitions
after:

sylius_process_cart:
on: ["address", "select_shipping", "select_payment"]
do: ["@sylius.order_processing.order_processor", "process"]
args: ["object"]

sylius_create_order:
on: ["complete"]
do: ["@sm.callback.cascade_transition", "apply"]
args: ["object", "event", "'create'", "'sylius_order'"]

sylius_hold_inventory:
on: ["complete"]

(continues on next page)

22 Chapter 1. The Book

Sylius

(continued from previous page)

do: ["@sylius.inventory.order_inventory_operator", "hold"]
args: ["object"]

sylius_assign_token:
on: ["complete"]
do: ["@sylius.unique_id_based_order_token_assigner",

→˓"assignTokenValueIfNotSet"]
args: ["object"]

Learn more

• Winzou StateMachine Bundle

• Customization guide: State machines

Translations

Sylius uses the approach of personal translations - where each entity is bound with a translation entity, that has
it’s own table (instead of keeping all translations in one table for the whole system). This results in having the
ProductTranslation class and sylius_product_translation table for the Product entity.

The logic of handling translations in Sylius is in the ResourceBundle

The fields of an entity that are meant to be translatable are saved on the translation entity, only their getters and setters
are also on the original model.

Let’s see an example:

Assuming that we would like to have a translatable model of a Supplier, we need a Supplier class and a Supplier-
Translation class.

<?php

namespace AppBundle\Entity;

use Sylius\Component\Resource\Model\AbstractTranslation;

class SupplierTranslation extends AbstractTranslation
{

/**
* @var string

*/
protected $name;

/**
* @return string

*/
public function getName()
{

return $this->name;
}

/**
* @param string $name

*/
public function setName($name)

(continues on next page)

1.1. The Book 23

https://github.com/winzou/StateMachineBundle

Sylius

(continued from previous page)

{
$this->name = $name;

}
}

The actual entity has access to its translation by using the TranslatableTrait which provides the
getTranslation() method.

Warning: Remember that the Translations collection of the entity (from the TranslatableTrait) has to be initial-
ized in the constructor!

<?php

namespace AppBundle\Entity;

use Sylius\Component\Resource\Model\TranslatableInterface;
use Sylius\Component\Resource\Model\TranslatableTrait;

class Supplier implements TranslatableInterface
{

use TranslatableTrait {
__construct as private initializeTranslationsCollection;

}

public function __construct()
{

$this->initializeTranslationsCollection();
}

/**
* @return string

*/
public function getName()
{

return $this->getTranslation()->getName();
}

/**
* @param string $name

*/
public function setName($name)
{

$this->getTranslation()->setName($name);
}

}

Fallback Translations

The getTranslation() method gets a translation for the current locale, while we are in the shop, but we can also
manually impose the locale - getTranslation('pl_PL')will return a polish translation if there is a translation
in this locale.

But when the translation for the chosen locale is unavailable, instead the translation for the fallback locale (the one

24 Chapter 1. The Book

Sylius

that was either set in config.yml or using the setFallbackLocale() method from the TranslatableTrait on
the entity) is used.

How to add a new translation programmatically?

You can programmatically add a translation to any of the translatable resources in Sylius. Let’s see how to do it on the
example of a ProductTranslation.

// Find a product to add a translation to it

/** @var ProductInterface $product */
$product = $this->container->get('sylius.repository.product')->findOneBy(['code' =>
→˓'radiohead-mug-code']);

// Create a new translation of product, give it a translated name and slug in the
→˓chosen locale

/** @var ProductTranslation $translation */
$translation = new ProductTranslation();

$translation->setLocale('pl_PL');
$translation->setName('Kubek Radiohead');
$translation->setSlug('kubek-radiohead');

// Add the translation to your product
$product->addTranslation($translation);

// Remember to save the product after adding the translation
$this->container->get('sylius.manager.product')->flush($product);

Learn more

• Resource - translations documentation

• Locales - concept documentation

E-Mails

Sylius is sending various e-mails and this chapter is a reference about all of them. Continue reading to learn what e-
mails are sent, when and how to customize the templates. To understand how e-mail sending works internally, please
refer to SyliusMailerBundle documentation. And to learn more about mailer services configuration, read the dedicated
cookbook.

User Confirmation

Every time a customer registers via the registration form, a user registration e-mail is sent to them.

Code: user_registration

The default template: SyliusShopBundle:Email:userRegistration.html.twig

You also have the following parameters available:

• user: Instance of the user model

1.1. The Book 25

Sylius

Email Verification

When a customer registers via the registration form, besides the User Confirmation an Email Verification is sent.

Code: verification_token

The default template: SyliusShopBundle:Email:verification.html.twig

You also have the following parameters available:

• user: Instance of the user model

Password Reset

This e-mail is used when the user requests to reset their password in the login form.

Code: reset_password_token

The default template: SyliusShopBundle:Email:passwordReset.html.twig

You also have the following parameters available:

• user: Instance of the user model

Order Confirmation

This e-mail is sent when order is placed.

Code: order_confirmation

The default template: SyliusShopBundle:Email:orderConfirmation.html.twig

You also have the following parameters available:

• order: Instance of the order, with all its data

Shipment Confirmation

This e-mail is sent when the order’s shipping process has started.

Code: shipment_confirmation

The default template: SyliusAdminBundle:Email:shipmentConfirmation.html.twig

You have the following parameters available:

• shipment: Shipment instance

• order: Instance of the order, with all its data

How to send an Email programmatically?

For sending emails Sylius is using a dedicated service - Sender. Additionally we have EmailManagers for Order
Confirmation(OrderEmailManager) and for Shipment Confirmation(ShipmentEmailManager).

Tip: While using Sender you have the available emails of Sylius available under constants in:

• Core - Emails

26 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/EmailManager/OrderEmailManager.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/AdminBundle/EmailManager/ShipmentEmailManager.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/Mailer/Emails.php

Sylius

• User - Emails

Example using Sender:

/** @var SenderInterface $sender */
$sender = $this->container->get('sylius.email_sender');

$sender->send(\Sylius\Bundle\UserBundle\Mailer\Emails::EMAIL_VERIFICATION_TOKEN, [
→˓'bannanowa@gmail.com'], ['user' => $user]);

Example using EmailManager:

/** @var OrderEmailManagerInterface $sender */
$orderEmailManager = $this->container->get('sylius.email_manager.order');

$orderEmailManager->sendConfirmationEmail($order);

Learn more

• Mailer - Component Documentation

• Mailer - Bundle Documentation

Contact

The functionality of contacting the shop support/admin is in Sylius very basic. Each Channel of your shop may have
a contactEmail configured on it. This will be the email address to support.

Contact form

The contact form can be found on the /contact route.

Note: When the contactEmail is not configured on the channel, the customer will see the following flash message:

The form itself has only two fields email (which will be filled automatically for the logged in users) and message.

ContactEmailManager

The ContactEmailManager service is responsible for the sending of a contact request email. It can be found under
the sylius.email_manager.contact service id.

1.1. The Book 27

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/UserBundle/Mailer/Emails.php

Sylius

ContactController

The controller responsible for the request action handling is the ContactController. It has the sylius.
controller.shop.contact service id.

Configuration

The routing for contact can be found in the Sylius/Bundle/ShopBundle/Resources/config/routing/
contact.yml file. By overriding that routing you will be able to customize redirect url, error flash, success flash,
form and its template.

You can also change the template of the email that is being sent by simply overriding it in your project in the app/
Resources/SyliusShopBundle/views/Email/contactRequest.html.twig file.

Learn more

• Emails - Documentation

Fixtures

Fixtures are used mainly for testing, but also for having your shop in a certain state, having defined data - they ensure
that there is a fixed environment in which your application is working.

Note: They way Fixtures are designed in Sylius is well described in the FixturesBundle documentation.

What are the available fixtures in Sylius?

To check what fixtures are defined in Sylius run:

$ php bin/console sylius:fixtures:list

How to load Sylius fixtures?

The recommended way to load the predefined set of Sylius fixtures is here:

$ php bin/console sylius:fixtures:load

What data is loaded by fixtures in Sylius?

All files that serve for loading fixtures of Sylius are placed in the Sylius/Bundle/CoreBundle/Fixture/*
directory.

And the specified data for fixtures is stored in the Sylius/Bundle/CoreBundle/Resources/config/app/fixtures.yml file.

28 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/Resources/config/app/fixtures.yml

Sylius

Learn more

• FixturesBundle documentation

Events

Tip: You can learn more about events in general in the Symfony documentation.

What is the naming convention of Sylius events?

The events that are designed for the entities have a general naming convention: sylius.entity_name.
event_name.

The examples of such events are: sylius.product.pre_update, sylius.shop_user.post_create,
sylius.taxon.pre_create.

Events reference

All Sylius bundles are using SyliusResourceBundle, which has some built-in events.

Event Description
sylius.<resource>.pre_create Before persist
sylius.<resource>.post_create After flush
sylius.<resource>.pre_update Before flush
sylius.<resource>.post_update After flush
sylius.<resource>.pre_delete Before remove
sylius.<resource>.post_delete After flush
sylius.<resource>.initialize_create Before creating view
sylius.<resource>.initialize_update Before creating view

CRUD events rules

As you should already know, every resource controller is represented by the sylius.controller.
<resource_name> service. Several useful events are dispatched during execution of every default action of this
controller. When creating a new resource via the createAction method, 2 events occur.

First, before the persist() is called on the resource, the sylius.<resource_name>.pre_create event is
dispatched.

And after the data storage is updated, sylius.<resource_name>.post_create is triggered.

The same set of events is available for the update and delete operations. All the dispatches are using the
GenericEvent class and return the resource object by the getSubject method.

What events are already used in Sylius?

Even though Sylius has events as entry points to each resource only some of these points are already used in our
usecases.

1.1. The Book 29

http://symfony.com/doc/current/event_dispatcher.html

Sylius

The events already used in Sylius are described in the Book alongside the concepts they concern.

Tip: What is more you can easily check all the Sylius events in your application by using this command:

$ php bin/console debug:event-dispatcher | grep sylius

Customizations

Note: Customizing logic via Events vs. State Machines

The logic in which Sylius operates can be customized in two ways. First of them is using the state machines: what is
really useful when you need to modify business logic for instance modify the flow of the checkout, and the second is
listening on the kernel events related to the entities, which is helpful for modifying the HTTP responses visible directly
to the user, like displaying notifications, sending emails.

Learn more

• Sylius Documentation: The Book

• Architecture Overview

• Resource Layer

• State Machine

• Translations

• E-Mails

• Contact

• Fixtures

• Events

• Architecture Overview

• Resource Layer

• State Machine

• Translations

• E-Mails

• Contact

• Fixtures

• Events

1.1.4 Configuration

Having knowledge about basics of our architecture we will introduce the three most important concepts - Channels,
Locales and Currencies. These things have to be configured before you will have a Sylius application up and running.

30 Chapter 1. The Book

Sylius

Configuration

Having knowledge about basics of our architecture we will introduce the three most important concepts - Channels,
Locales and Currencies. These things have to be configured before you will have a Sylius application up and running.

Channels

In the modern world of e-commerce your website is no longer the only point of sale for your goods.

Channel model represents a single sales channel, which can be one of the following things:

• Webstore

• Mobile application

• Cashier in your physical store

Or pretty much any other channel type you can imagine.

What may differ between channels? Particularly anything from your shop configuration:

• products,

• currencies,

• locales (language),

• themes,

• hostnames,

• taxes,

• payment and shipping methods.

A Channel has a code, a name and a color.

In order to make the system more convenient for the administrator - there is just one, shared admin panel. Also users
are shared among the channels.

Tip: In the dev environment you can easily check what channel you are currently on in the Symfony debug toolbar.

How to get the current channel?

You can get the current channel from the channel context.

$channel = $this->container->get('sylius.context.channel')->getChannel();

1.1. The Book 31

Sylius

Warning: Beware! When using multiple channels, remember to configure hostname for each of them. If
missing, default context would not be able to provide appropriate channel and it will result in an error.

Note: The channel is by default determined basing on the hostname, but you can customize that behaviour. To do that
you have to implement the Sylius\Component\Channel\Context\ChannelContextInterface and
register it as a service under the sylius.context.channel tag. Optionally you can add a priority="-64"
since the default ChannelContext has a priority="-128", and by default a priority="0" is assigned.

Note: Moreover if the channel depends mainly on the request you can implement the
Sylius\Component\Channel\Context\RequestBased\RequestResolverInterface with its
findChannel(Request $request) method and register it under the sylius.context.channel.
request_based.resolver tag.

Learn more

• Channel - Component Documentation.

Note: In order to add a new locale to your store you have to assign it to a channel.

Locales

To support multiple languages we are using Locales in Sylius. Locales are language codes standardized by the ISO
15897.

Tip: In the dev environment you can easily check what locale you are currently using in the Symfony debug toolbar:

32 Chapter 1. The Book

Sylius

Base Locale

During the installation you provided a default base locale. This is the language in which everything in your system
will be saved in the database - all the product names, texts on website, e-mails etc.

Locale Context

To manage the currently used language, we use the LocaleContext. You can always access it with the ID sylius.
context.locale in the container.

<?php

public function fooAction()
{

$locale = $this->get('sylius.context.locale')->getLocaleCode();
}

The locale context can be injected into any of your services and give you access to the currently used locale.

Available Locales Provider

The Locale Provider service (sylius.locale_provider) is responsible for returning all languages available for
the current user. By default, returns all configured locales. You can easily modify this logic by overriding this service.

<?php

public function fooAction()
{

$locales = $this->get('sylius.locale_provider')->getAvailableLocalesCodes();

foreach ($locales as $locale) {
echo $locale->getCode();

}
}

To get all languages configured in the store, regardless of your availability logic, use the locales repository:

<?php

$locales = $this->get('sylius.repository.locale')->findAll();

Learn more

• Locale - Component Documentation.

Currencies

Sylius supports multiple currencies per store and makes it very easy to manage them.

There are several approaches to processing several currencies, but we decided to use the simplest solution we are
storing all money values in the base currency per channel and convert them to other currencies with exchange rates.

1.1. The Book 33

Sylius

Note: The base currency to the first channel is set during the installation of Sylius and it has the exchange rate
equal to “1.000”.

Tip: In the dev environment you can easily check the base currency in the Symfony debug toolbar:

Currency Context

By default, user can switch the current currency in the frontend of the store.

To manage the currently used currency, we use the CurrencyContext. You can always access it through the sylius.
context.currency id.

<?php

public function fooAction()
{

$currency = $this->get('sylius.context.currency')->getCurrency();
}

Currency Converter

The Sylius\Component\Currency\Converter\CurrencyConverter is a service available under the
sylius.currency_converter id.

It allows you to convert money values from one currency to another.

This solution is used for displaying an approximate value of price when the desired currency is different from the base
currency of the current channel.

34 Chapter 1. The Book

Sylius

Available Currencies Provider

The default menu for selecting currency is using a service - CurrencyProvider - with the sylius.
currency_provider id, which returns all enabled currencies. This is your entry point if you would like override
this logic and return different currencies for various scenarios.

<?php

public function fooAction()
{

$currencies = $this->get('sylius.currency_provider')->getAvailableCurrencies();
}

Switching Currency of a Channel

We may of course change the currency used by a channel. For that we have the sylius.storage.currency ser-
vice, which implements the Sylius\Component\Core\Currency\CurrencyStorageInterface with
methods ->set(ChannelInterface $channel, $currencyCode) and ->get(ChannelInterface
$channel).

$container->get('sylius.storage.currency')->set($channel, 'PLN');

Displaying Currencies in the templates

There are some useful helpers for rendering money values in the front end. Simply import the money macros of the
ShopBundle in your twig template and use the functions to display the value:

..
{% import "@SyliusShop/Common/Macro/money.html.twig" as money %}
..

{{ money.format(price, 'EUR') }}

Sylius provides you with some handy Global Twig variables to facilitate displaying money values even more.

Learn more

• Currency - Component Documentation

• Pricing Concept Documentation

• Channels

• Locales

• Currencies

• Channels

• Locales

• Currencies

1.1. The Book 35

Sylius

1.1.5 Customers

This chapter will tell you more about the way Sylius handles users, customers and admins. There is also a subchapter
dedicated to addresses of your customers.

Customers

This chapter will tell you more about the way Sylius handles users, customers and admins. There is also a subchapter
dedicated to addresses of your customers.

Customer and ShopUser

For handling customers of your system Sylius is using a combination of two entities - Customer and ShopUser. The
difference between these two entities is simple: the Customer is a guest in your shop and the ShopUser is a user
registered in the system - they have an account.

Customer

The Customer entity was created to collect data about non-registered guests of the system - ones that has been buying
without having an account or that have somehow provided us their e-mail.

How to create a Customer programmatically?

As usual, use a factory. The only required field for the Customer entity is email, provide it before adding it to the
repository.

/** @var CustomerInterface $customer */
$customer = $this->container->get('sylius.factory.customer')->createNew();

$customer->setEmail('customer@test.com');

$this->container->get('sylius.repository.customer')->add($customer);

The Customer entity can of course hold other information besides an email, it can be for instance billingAddress
and shippingAddress, firstName, lastName or birthday.

Note: The relation between the Customer and ShopUser is bidirectional. Both entities hold a reference to each other.

ShopUser

ShopUser entity is designed for customers that have registered in the system - they have an account with both e-mail
and password. They can visit and modify their account.

While creating new account the existence of the provided email in the system is checked - if the email was present - it
will already have a Customer therefore the existing one will be assigned to the newly created ShopUser, if not - a new
Customer will be created together with the ShopUser.

36 Chapter 1. The Book

Sylius

How to create a ShopUser programmatically?

Assuming that you have a Customer (either retrieved from the repository or a newly created one) - use a factory to
create a new ShopUser, assign the existing Customer and a password via the setPlainPassword() method.

/** @var ShopUserInterface $user */
$user = $this->container->get('sylius.factory.shop_user')->createNew();

// Now let's find a Customer by their e-mail:
/** @var CustomerInterface $customer */
$customer = $this->container->get('sylius.repository.customer')->findOneBy(['email' =>
→˓ 'customer@test.com']);

// and assign it to the ShopUser
$user->setCustomer($customer);
$user->setPlainPassword('pswd');

$this->container->get('sylius.repository.shop_user')->add($user);

Changing the ShopUser password

The already set password of a ShopUser can be easily changed via the setPlainPassword() method.

$user->getPassword(); // returns encrypted password - 'pswd'

$user->setPlainPassword('resu1');
// the password will now be 'resu1' and will become encrypted while saving the user
→˓in the database

Customer related events

Event id Description
sylius.customer.post_register dispatched when a new Customer is registered
sylius.customer.pre_update dispatched when a Customer is updated
sylius.oauth_user.post_create dispatched when an OAuthUser is created
sylius.oauth_user.post_update dispatched when an OAuthUser is updated
sylius.shop_user.post_create dispatched when a User is created
sylius.shop_user.post_update dispatched when a User is updated
sylius.shop_user.pre_delete dispatched before a User is deleted
sylius.user.email_verification.token dispatched when a verification token is requested
sylius.user.password_reset.request.
token

dispatched when a reset password token is requested

sylius.user.pre_password_change dispatched before user password is changed
sylius.user.pre_password_reset dispatched before user password is reset
sylius.user.security.implicit_login dispatched when an implicit login is done
security.interactive_login dispatched when an interactive login is done

Learn more

• User - Component Documentation

1.1. The Book 37

Sylius

AdminUser

The AdminUser entity extends the User entity. It is created to enable administrator accounts that have access to the
administration panel.

How to create an AdminUser programmatically?

The AdminUser is created just like every other entity, it has its own factory. By default it will have an administration
role assigned.

/** @var AdminUserInterface $admin */
$admin = $this->container->get('sylius.factory.admin_user')->createNew();

$admin->setEmail('administrator@test.com');
$admin->setPlainPassword('pswd');

$this->container->get('sylius.repository.admin_user')->add($admin);

Administration Security

In Sylius by default you have got the administration panel routes (/admin/*) secured by a firewall - its configuration
can be found in the security.yml file.

Only the logged in AdminUsers are eligible to enter these routes.

Learn more

• Customer & ShopUser - Documentation

Addresses

Countries

Countries are a part of the Addressing concept. The Country entity represents a real country that your shop is willing
to sell its goods in (for example the UK). It has an ISO code to be identified easily (ISO 3166-1 alpha-2).

Countries might also have Provinces, which is in fact a general name for an administrative division, within a country.
Therefore we understand provinces as states of the USA, voivodeships of Poland, cantons of Belgium or bundesländer
of Germany.

How to add a country?

To give you a better insight into Countries, let’s have a look on how to prepare and add a Country to the system
programmatically. We will do it with a province at once.

You will need factories for countries and provinces in order to create them:

38 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/app/config/security.yml
http://www.iso.org/iso/country_codes

Sylius

/** @var CountryInterface $country */
$country = $this->container->get('sylius.factory.country')->createNew();

/** @var ProvinceInterface $province */
$province = $this->container->get('sylius.factory.province')->createNew();

To the newly created objects assign codes.

// US - the United States of America
$country->setCode('US');
// US_CA - California
$province->setCode('US_CA');

Provinces may be added to a country via a collection. Create one and add the province object to it and using the
prepared collection add the province to the Country.

$provinces = new ArrayCollection();
$provinces->add($province);

$country->setProvinces($provinces);

You can of course simply add single province:

$country->addProvince($province);

Finally you will need a repository for countries to add the country to your system.

/** @var RepositoryInterface $countryRepository */
$countryRepository = $this->get('sylius.repository.country');

$countryRepository->add($country);

From now on the country will be available to use in your system.

Learn more

• Addressing - Bundle Documentation

• Addressing - Component Documentation

Zones

Zones are a part of the Addressing concept.

Zones and ZoneMembers

Zones consist of ZoneMembers. It can be any kind of zone you need - for instance if you want to have all the EU
countries in one zone, or just a few chosen countries that have the same taxation system in one zone, or you can even
distinguish zones by the ZIP code ranges in the USA.

Three different types of zones are available:

• country zone, which consists of countries.

• province zone, which is constructed from provinces.

1.1. The Book 39

Sylius

• zone, which is a group of other zones.

How to add a Zone?

Let’s see how you can add a Zone to your system programmatically.

Firstly you will need a factory for zones - There is a specific one.

/** @var ZoneFactoryInterface $zoneFactory */
$zoneFactory = $this->container->get('sylius.factory.zone');

Using the ZoneFactory create a new zone with its members. Let’s take the UK as an example.

/** @var ZoneInterface $zone */
$zone = $zoneFactory->createWithMembers(['GB_ENG', 'GB_NIR', 'GB_SCT'. 'GB_WLS']);

Now give it a code, name and type:

$zone->setCode('GB');
$zone->setName('United Kingdom');
// available types are the type constants from the ZoneInterface
$zone->setType(ZoneInterface::TYPE_PROVINCE);

Finally get the zones repository from the container and add the newly created zone to the system.

/** @var RepositoryInterface $zoneRepository */
$zoneRepository = $this->container->get('sylius.repository.zone');

$zoneRepository->add($zone);

Matching a Zone

Zones are not very useful alone, but they can be a part of a complex taxation/shipping or any other system. A service
implementing the ZoneMatcherInterface is responsible for matching the Address to a specific Zone.

/** @var ZoneMatcherInterface $zoneMatcher */
$zoneMatcher = $this->get('sylius.zone_matcher');
$zone = $zoneMatcher->match($user->getAddress());

ZoneMatcher can also return all matching zones. (not only the most suitable one)

/** @var ZoneMatcherInterface $zoneMatcher */
$zoneMatcher = $this->get('sylius.zone_matcher');
$zones = $zoneMatcher->matchAll($user->getAddress());

Internally, Sylius uses this service to define the shipping and billing zones of an Order, but you can use it for many
different things and it is totally up to you.

Learn more

• Addressing - Bundle Documentation

• Addressing - Component Documentation

40 Chapter 1. The Book

Sylius

Addresses

Every address in Sylius is represented by the Address model. It has a few important fields:

• firstName

• lastName

• phoneNumber

• company

• countryCode

• provinceCode

• street

• city

• postcode

Note: The Address has a relation to a Customer - which is really useful during the Checkout addressing step.

How to create an Address programmatically?

In order to create a new address, use a factory. Then complete your address with required data.

/** @var AddressInterface $address */
$address = $this->container->get('sylius.factory.address')->createNew();

$address->setFirstName('Harry');
$address->setLastName('Potter');
$address->setCompany('Ministry of Magic');
$address->setCountryCode('UK');
$address->setProvinceCode('UKJ');
$address->setCity('Little Whinging');
$address->setStreet('4 Privet Drive');
$address->setPostcode('000001');

// and finally having the address you can assign it to any Order
$order->setShippingAddress($address);

Learn more

• Addressing - Component Documentation

• Addressing - Bundle Documentation

Address Book

The Address Book concept is a very convenient solution for the customers of your shop, that come back. Once they
provide an address it is saved in the system and can be reused the next time.

Sylius handles the address book in a not complex way:

1.1. The Book 41

Sylius

The Addresses Collection on a Customer

On the Customer entity we are holding a collection of addresses:

/**
* @var Collection|AddressInterface[]

*/
protected $addresses;

We can operate on it as usual - by adding and removing objects.

Besides the Customer entity has a default address field that is the default address used both for shipping and billing,
the one that will be filling the form fields by default.

How to add an address to the address book manually?

If you would like to add an address to the collection of Addresses of a chosen customer that’s all what you should do:

Create a new address:

/** @var AddressInterface $address */
$address = $this->container->get('sylius.factory.address')->createNew();

$address->setFirstName('Ronald');
$address->setLastName('Weasley');
$address->setCompany('Ministry of Magic');
$address->setCountryCode('UK');
$address->setProvinceCode('UKJ');
$address->setCity('Otter St Catchpole');
$address->setStreet('The Burrow');
$address->setPostcode('000001');

Then find a customer to which you would like to assign it, and add the address.

$customer = $this->container->get('sylius.repository.customer')->findOneBy(['email' =>
→˓ 'ron.weasley@magic.com']);

$customer->addAddress($address);

Remember to flush the customer’s manager to save this change.

$this->container->get('sylius.manager.customer')->flush();

Learn more

• Customer & ShopUser Concept Documentation

• Addressing - Component Documentation

• Addressing - Bundle Documentation

• Countries

• Zones

• Addresses

• Address Book

42 Chapter 1. The Book

Sylius

• Customer and ShopUser

• AdminUser

• Addresses

• Customer and ShopUser

• AdminUser

• Addresses

1.1.6 Products

This is a guide to understanding products handling in Sylius together with surrounding concepts. Read about Associ-
ations, Reviews, Attributes, Taxons etc.

Products

This is a guide to understanding products handling in Sylius together with surrounding concepts.

Products

Product model represents unique products in your Sylius store. Every product can have different variations and
attributes.

Warning: Each product has to have at least one variant to be sold in the shop.

How to create a Product?

Before we learn how to create products that can be sold, let’s see how to create a product without its complex depen-
dencies.

/** @var ProductFactoryInterface $productFactory **/
$productFactory = $this->get('sylius.factory.product');

/** @var ProductInterface $product */
$product = $productFactory->createNew();

Creating an empty product is not enough to save it in the database. It needs to have a name, a code and a slug.

$product->setName('T-Shirt');
$product->setCode('00001');
$product->setSlug('t-shirt');

/** @var RepositoryInterface $productRepository */
$productRepository = $this->get('sylius.repository.product');

$productRepository->add($product);

After being added via the repository, your product will be in the system. But the customers won’t be able to buy it.

1.1. The Book 43

Sylius

Variants

ProductVariant represents a unique kind of product and can have its own pricing configuration, inventory tracking
etc.

Variants may be created out of Options of the product, but you are also able to use product variations system without
the options at all.

Virtual Product Variants, that do not require shipping

Tip: On the ProductVariant there is a possibility to make a product virtual - by setting its shippingRequired
property to false. In such a way you can have products that will be downloadable or installable for instance.

How to create a Product with a Variant?

You may need to sell product in different Variants - for instance you may need to have books both in hardcover
and in paperback. Just like before, use a factory, create the product, save it in the Repository. And then using the
ProductVariantFactory create a variant for your product.

/** @var ProductVariantFactoryInterface $productVariantFactory **/
$productVariantFactory = $this->get('sylius.factory.product_variant');

/** @var ProductVariantInterface $productVariant */
$productVariant = $productVariantFactory->createNew();

Having created a Variant, provide it with the required attributes and attach it to your Product.

$productVariant->setName('Hardcover');
$productVariant->setCode('1001');
$productVariant->setPosition(1);
$productVariant->setProduct($product);

Finally save your Variant in the database using a repository.

/** @var RepositoryInterface $productVariantRepository */
$productVariantRepository = $this->get('sylius.repository.product_variant');

$productVariantRepository->add($variant);

Options

In many cases, you will want to have product with different variations. The simplest example would be a piece of
clothing, like a T-Shirt available in different sizes and colors or a glass available in different shapes or colors. In order
to automatically generate appropriate variants, you need to define options.

Every option type is represented by ProductOption and references multiple ProductOptionValue entities.

For example you can have two options - Size and Color. Each of them will have their own values.

• Size

– S

44 Chapter 1. The Book

Sylius

– M

– L

– XL

– XXL

• Color

– Red

– Green

– Blue

After defining possible options for a product let’s move on to Variants which are in fact combinations of options.

How to create a Product with Options and Variants?

Firstly let’s learn how to prepare an exemplary Option and its values.

/** @var ProductOptionInterface $option */
$option = $this->get('sylius.factory.product_option')->createNew();
$option->setCode('t_shirt_color');
$option->setName('T-Shirt Color');

// Prepare an array with values for your option, with codes, locale code and option
→˓values.
$valuesData = [

'OV1' => ['locale' => 'en_US', 'value' => 'Red'],
'OV2' => ['locale' => 'en_US', 'value' => 'Blue'],
'OV3' => ['locale' => 'en_US', 'value' => 'Green'],

];

foreach ($valuesData as $code => $values) {
/** @var ProductOptionValueInterface $optionValue */
$optionValue = $this->get('sylius.factory.product_option_value')->createNew();

$optionValue->setCode($code);
$optionValue->setFallbackLocale($values['locale']);
$optionValue->setCurrentLocale($values['locale']);
$optionValue->setValue($values['value']);

$option->addValue($optionValue);
}

After you have an Option created and you keep it as $option variable let’s add it to the Product and generate
Variants.

// Assuming that you have a basic product let's add the previously created option to
→˓it.
$product->addOption($option);

// Having option of a product you can generate variants. Sylius has a service for
→˓that operation.
/** @var ProductVariantGeneratorInterface $variantGenerator */
$variantGenerator = $this->get('sylius.generator.product_variant');

(continues on next page)

1.1. The Book 45

Sylius

(continued from previous page)

$variantGenerator->generate($product);

// And finally add the product, with its newly generated variants to the repository.
/** @var RepositoryInterface $productRepository */
$productRepository = $this->get('sylius.repository.product');

$productRepository->add($product);

Learn more:

• Product - Bundle Documentation

• Product - Component Documentation

Product Reviews

Product Reviews are a marketing tool that let your customers give opinions about the products they buy in your shop.
They have a rating and comment.

Rating

The rating of a product review is required and must be between 1 and 5.

Product review state machine

When you look inside the CoreBundle/Resources/config/app/state_machine/
sylius_product_review.yml you will find out that a Review can have 3 different states:

• new,

• accepted,

• rejected

There are only two possible transitions: accept (from new to accepted) and reject (from new to rejected).

46 Chapter 1. The Book

Sylius

When a review is accepted the average rating of a product is updated.

How is the average rating calculated?

The average rating is updated by the AverageRatingUpdater service.

It wraps the AverageRatingCalculator, and uses it inside the updateFromReview method.

How to add a ProductReview programmatically?

Create a new review using a factory:

/** @var ReviewInterface $review */
$review = $this->container->get('sylius.factory.product_review')->createNew();

Fill the content of your review.

$review->setTitle('My Review');
$review->setRating(5);
$review->setComment('This product is really great');

Then get a customer from the repository, which you would like to make an author of this review.

$customer = $this->container->get('sylius.repository.customer')->findOneBy(['email' =>
→˓ 'john.doe@test.com']);

$review->setAuthor($customer);

Remember to set the object that is the subject of your review and then add the review to the repository.

1.1. The Book 47

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ReviewBundle/Updater/AverageRatingUpdater.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Review/Calculator/AverageRatingCalculator.php

Sylius

$review->setReviewSubject($product);

$this->container->get('sylius.repository.product_review')->add($review);

Learn more

• Product - Bundle Documentation

• Product - Component Documentation

Product Associations

Associations of products can be used as a marketing tool for suggesting your customers, what products to buy together
with the one they are currently considering. Associations can increase your shop’s efficiency. You choose what strategy
you prefer. They are fully configurable.

Association Types

The type of an association can be different. If you sell food you can suggest inspiring ingredients, if you sell products
for automotive you can suggest buying some tools that may be useful for a home car mechanic. Exemplary association
types can be: up-sell, cross-sell, accessories, alternatives and whatever you imagine.

How to create a new Association Type?

Create a new Association Type using a dedicated factory. Give the association a code and a name to easily recognize
the type.

/** @var ProductAssociationTypeInterface $associationType */
$associationType = $this->container->get('sylius.factory.product_association_type')->
→˓createNew();

$associationType->setCode('accessories');
$associationType->setName('Accessories');

To have the new association type in the system add it to the repository.

$this->container->get('sylius.repository.product_association_type')->add(
→˓$associationType);

How to add a new Association to a Product?

Find in your system a product to which you would like to add an association. We will use a Go Pro camera as an
example.

$product = $this->container->get('sylius.repository.product')->findOneBy(['code' =>
→˓'go-pro-camera']);

Next create a new Association which will connect our camera with its accessories. Such an association needs the
AssociationType we have created in the previous step above.

48 Chapter 1. The Book

Sylius

/** @var ProductAssociationInterface $association */
$association = $this->container->get('sylius.factory.product_association')->
→˓createNew();

/** @var ProductAssociationTypeInterface $associationType */
$associationType = $this->container->get('sylius.repository.product_association_type
→˓')->findOneBy(['code' => 'accessories']);

$association->setType($associationType);

Let’s add all products from a certain taxon to the association we have created. To do that find a desired taxon by code
and get all its products. Perfect accessories for a camera will be SD cards.

/** @var TaxonInterface $taxon */
$taxon = $this->container->get('sylius.repository.taxon')->findOneBy(['code' => 'sd-
→˓cards']);

$associatedProducts = $taxon->getProducts();

Having a collection of products from the SD cards taxon iterate over them and add them one by one to the association.

foreach ($associatedProducts as $associatedProduct) {
$association->addAssociatedProduct($associatedProduct);

}

Finally add the created association with SD cards to our Go Pro camera product.

$product->addAssociation($association);

And to save everything in the database you need to add the created association to the repository.

$this->container->get('sylius.repository.product_association')->add($association);

Learn more:

• Product - Concept Documentation

Attributes

Attributes in Sylius are used to describe traits shared among entities. The best example are products, that may be of
the same category and therefore they will have many similar attributes such as number of pages for a book, brand
of a T-shirt or simply details of any product.

Attribute

The Attribute model has a translatable name (like for instance Book pages), code (book_pages) and type
(integer). There are a few available types of an Attribute:

• text (default)

• checkbox

• integer

1.1. The Book 49

Sylius

• percent

• textarea

• date

• datetime

What these types may be useful for?

• text - brand of a T-Shirt

• checkbox - show whether a T-Shirt is made of cotton or not

• integer - number of elements when a product is a set of items.

• percent - show how much cotton is there in a piece of clothing

• textarea - display more detailed information about a product

• date - release date of a movie

• datetime - accurate date and time of an event

How to create an Attribute?

To give you a better insight into Attributes, let’s have a look how to prepare and add an Attribute with a Product to the
system programatically.

To assign Attributes to Products firstly you will need a factory for ProductAttributes. The AttributeFactory has a
special method createTyped($type), where $type is a string.

The Attribute needs a code and a name before it can be saved in the repository.

/** @var AttributeFactoryInterface $attributeFactory */
$attributeFactory = $this->container->get('sylius.factory.product_attribute');

/** @var AttributeInterface $attribute */
$attribute = $attributeFactory->createTyped('text');

$attribute->setName('Book cover');
$attribute->setCode('book_cover');

$this->container->get('sylius.repository.product_attribute')->add($attribute);

In order to assign value to your Attribute you will need a factory of ProductAttributeValues, use it to create a new
value object.

/** @var FactoryInterface $attributeValueFactory */
$attributeValueFactory = $this->container->get('sylius.factory.product_attribute_value
→˓');

/** @var AttributeValueInterface $hardcover */
$hardcover = $attributeValueFactory->createNew();

Attach the new AttributeValue to your Attribute and set its value, which is what will be rendered in frontend.

$hardcover->setAttribute($attribute);

$hardcover->setValue('hardcover');

Finally let’s find a product that will have your newly created attribute.

50 Chapter 1. The Book

Sylius

/** @var ProductInterface $product */
$product = $this->container->get('sylius.repository.product')->findOneBy(['code' =>
→˓'code']);

$product->addAttribute($hardcover);

Now let’s see what has to be done if you would like to add an attribute of integer type. Let’s find such a one in the
repository, it will be for example the BOOK-PAGES attribute.

/** @var AttributeInterface $bookPagesAttribute */
$bookPagesAttribute = $this->container->get('sylius.repository.product_attribute')->
→˓findOneBy(['code' => 'BOOK-PAGES']);

/** @var AttributeValueInterface $pages */
$pages = $attributeValueFactory->createNew();

$pages->setAttribute($bookPagesAttribute);

$pages->setValue(500);

$product->addAttribute($pages);

After adding attributes remember to flush the product manager.

$this->container->get('sylius.manager.product')->flush();

Your Product will now have two Attributes.

Learn more

• Attribute - Component Documentation

Pricing

Pricing is a part of Sylius responsible for providing the product prices per channel.

Note: All prices in Sylius are saved in the base currency of each channel separately.

Currency per Channel

As you already know Sylius operates on Channels.

Each channel has a base currency in which all prices are saved.

Note: Whenever you operate on concepts that have specified values per channel (like ProductVariant’s price, Promo-
tion’s fixed discount etc.)

1.1. The Book 51

Sylius

Exchange Rates

Each currency defined in the system should have an ExchangeRate configured.

ExchangeRate is a separate entity that holds a relation between two currencies and specifies their exchange rate.

Exchange rates are used for viewing the approximate price in a currency different from the base currency of a channel.

Learn more

• Currency - Component Documentation

• Currencies Concept Documentation

Taxons

We understand Taxons in Sylius as you would normally define categories. Sylius gives you a possibility to categorize
your products in a very flexible way, which is one of the most vital functionalities of the modern e-commerce systems.
The Taxons system in Sylius works in a hierarchical way. Let’s see exemplary categories trees:

Category
|
|__ Clothes
| _ T-Shirts
| _ Shirts
| _ Dresses
| _ Shoes
|
__ Books

_ Fantasy
_ Romance
_ Adventure
_ Other

Gender
|
_ Male
_ Female

How to create a Taxon?

As always with Sylius resources, to create a new object you need a factory. If you want to create a single, not nested
category:

/** @var FactoryInterface $taxonFactory */
$taxonFactory = $this->get('sylius.factory.taxon');

/** @var TaxonInterface $taxon */
$taxon = $taxonFactory->createNew();

$taxon->setCode('category');
$taxon->setName('Category');

But if you want to have a tree of categories, create another taxon and add it as a child to the previously created one.

52 Chapter 1. The Book

Sylius

/** @var TaxonInterface $childTaxon */
$childTaxon = $taxonFactory->createNew();

$childTaxon->setCode('clothes');
$childTaxon->setName('Clothes');

$taxon->addChild($childTaxon);

Finally the parent taxon has to be added to the system using a repository, all its child taxons will be added with it.

/** @var TaxonRepositoryInterface $taxonRepository */
$taxonRepository = $this->get('sylius.repository.taxon');

$taxonRepository->add($taxon);

How to assign a Taxon to a Product?

In order to categorize products you will need to assign your taxons to them - via the addProductTaxon() method
on Product.

/** @var ProductInterface $product */
$product = $this->container->get('sylius.factory.product')->createNew();
$product->setCode('product_test');
$product->setName('Test');

/** @var TaxonInterface $taxon */
$taxon = $this->container->get('sylius.factory.taxon')->createNew();
$taxon->setCode('food');
$taxon->setName('Food');

/** @var RepositoryInterface $taxonRepository */
$taxonRepository = $this->container->get('sylius.repository.taxon');
$taxonRepository->add($taxon);

/** @var ProductTaxonInterface $productTaxon */
$productTaxon = $this->container->get('sylius.factory.product_taxon')->createNew();
$productTaxon->setTaxon($taxon);
$productTaxon->setProduct($product);

$product->addProductTaxon($productTaxon);

/** @var EntityManagerInterface $productManager */
$productManager = $this->container->get('sylius.manager.product');

$productManager->persist($product);
$productManager->flush();

What is the mainTaxon of a Product?

The product entity in Sylius core has a field mainTaxon. This field is used, for instance, for breadcrumbs generation.
But you can also use it for your own logic, like for instance links generation.

To set it on your product you need to use the setMainTaxon() method.

1.1. The Book 53

Sylius

Learn more

• Taxonomy - Bundle Documentation

• taxonomy - Component Documentation

Inventory

Sylius leverages a very simple approach to inventory management. The current stock of an item is stored on the
ProductVariant entity as the onHand value.

InventoryUnit

InventoryUnit has a relation to a Stockable on it, in case of Sylius Core it will be a relation to the ProductVariant that
implements the StockableInterface on the OrderItemUnit that implements the InventoryUnitInterface.

It represents a physical unit of the product variant that is in the shop.

Inventory On Hold

Putting inventory items onHold is a way of reserving them before the customer pays for the order. Items are put on
hold when the checkout is completed.

Tip: Putting items onHold does not remove them from onHand yet. If a customer buys 2 tracked items out of 5
being in the inventory (5 onHand), after the checkout there will be 5 onHand and 2 onHold.

Availability Checker

There is a service that will help you check the availability of items in the inventory - AvailabilityChecker.

It has two methods isStockAvailable (is there at least one item available) and isStockSufficient (is there
a given amount of items available).

Tip: There are two respective twig functions for checking inventory: sylius_inventory_is_available and
sylius_inventory_is_sufficient.

OrderInventoryOperator

Inventory Operator is the service responsible for managing the stock amounts of every ProductVariant on an Order
with the following methods:

• hold - is called when the order’s checkout is completed, it puts the inventory units onHold, while still not
removing them from onHand,

• sell - is called when the order’s payment are assigned with the state paid. The inventory items are then
removed from onHold and onHand,

• release - is a way of making onHold items of an order back to only onHand,

54 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Inventory/Model/StockableInterface.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Inventory/Checker/AvailabilityChecker.php

Sylius

• giveBack - is a way of returning sold items back to the inventory onHand,

• cancel - this method works both when the order is paid and unpaid. It uses both giveBack and release
methods.

How does Inventory work on examples?

Tip: You can see all use cases we have designed in Sylius in our Behat scenarios for inventory.

Learn more

• Order concept documentation

• Inventory Bundle documentation

• Inventory Component documentation

Search

Having a products search functionality in an eCommerce system is a very popular use case. Sylius provides a products
search functionality that is a grid filter.

Grid filters

For simple use cases of products search use the filters of grids. For example, the shop’s categories each have a
search filter in the products grid:

Sylius/Bundle/ShopBundle/Resources/config/grids/product.yml
filters:

search:
type: string
label: false
options:

fields: [translation.name]
form_options:

type: contains

It searches by product names that contains a string that the user typed in the search bar.

The search bar looks like below:

1.1. The Book 55

https://github.com/Sylius/Sylius/tree/master/features/inventory

Sylius

Customizing search filter

The search bar in many shops should be more sophisticated, than just a simple text search. You may need to add
searching by price, reviews, sizes or colors.

If you would like to extend this built-in functionality read this article about grids customizations, and the GridBundle
docs.

ElasticSearch

When the grids filtering is not enough for you, and your needs are more complex you should go for the ElasticSearch
integration.

There is the Sylius/SyliusElasticSearchPlugin integration extension, which you can use to extend Sylius functionalities
with ElasticSearch.

All you have to do is require the plugin in your project via composer, install the ElasticSearch server, and configure
ElasticSearch in your application. Everything is well described in the Sylius/SyliusElasticSearchPlugin’s readme.

Learn more

• SyliusElasticSearchPlugin

• Grid Bundle documentation

• Grid Component documentation

• Products

• Product Reviews

• Product Associations

• Attributes

• Pricing

• Taxons

56 Chapter 1. The Book

https://www.elastic.co/products/elasticsearch
https://github.com/Sylius/SyliusElasticSearchPlugin
https://github.com/Sylius/SyliusElasticSearchPlugin

Sylius

• Inventory

• Search

• Products

• Product Reviews

• Product Associations

• Attributes

• Pricing

• Taxons

• Inventory

• Search

1.1.7 Carts & Orders

In this chapter you will learn everything you need to know about orders in Sylius. This concept comes together with a
few additional ones, like promotions, payments, shipments or checkout in general.

You should also have a look here if you are looking for Cart, which is in Sylius an Order in the cart state.

Carts & Orders

In this chapter you will learn everything you need to know about orders in Sylius. This concept comes together with a
few additional ones, like promotions, payments, shipments or checkout in general.

Warning: Cart in Sylius is in fact an Order in the state cart.

Orders

Order model is one of the most important in Sylius, where many concepts of e-commerce meet. It represents an order
that can be either placed or in progress (cart).

Order holds a collection of OrderItem instances, which represent products from the shop, as its physical copies, with
chosen variants and quantities.

Each Order is assigned to the channel in which it has been created as well as the language the customer was using
while placing the order. The order currency code will be the base currency of the current channel by default.

How to create an Order programmatically?

To programmatically create an Order you will of course need a factory.

/** @var FactoryInterface $order */
$orderFactory = $this->container->get('sylius.factory.order');

/** @var OrderInterface $order */
$order = $orderFactory->createNew();

1.1. The Book 57

Sylius

Then get a channel to which you would like to add your Order. You can get it from the context or from the repository
by code for example.

/** @var ChannelInterface $channel */
$channel = $this->container->get('sylius.context.channel')->getChannel();

$order->setChannel($channel);

Next give your order a locale code.

/** @var string $localeCode */
$localeCode = $this->container->get('sylius.context.locale')->getLocaleCode();

$order->setLocaleCode($localeCode);

And a currency code:

$currencyCode = $this->container->get('sylius.context.currency')->getCurrencyCode();

$order->setCurrencyCode($currencyCode);

What is more the proper Order instance should also have the Customer assigned. You can get it from the repository
by email.

/** @var CustomerInterface $customer */
$customer = $this->container->get('sylius.repository.customer')->findOneBy(['email' =>
→˓ 'shop@example.com']);

$order->setCustomer($customer);

A very important part of creating an Order is adding OrderItems to it. Assuming that you have a Product with a
ProductVariant assigned already in the system:

/** @var ProductVariantInterface $variant */
$variant = $this->container->get('sylius.repository.product_variant')->findOneBy([]);

// Instead of getting a specific variant from the repository
// you can get the first variant of off a product by using $product->getVariants()->
→˓first()
// or use the **VariantResolver** service - either the default one or your own.
// The default product variant resolver is available at id - 'sylius.product_variant_
→˓resolver.default'

/** @var OrderItemInterface $orderItem */
$orderItem = $this->container->get('sylius.factory.order_item')->createNew();
$orderItem->setVariant($variant);

In order to change the amount of items use the OrderItemQuantityModifier.

$this->container->get('sylius.order_item_quantity_modifier')->modify($orderItem, 3);

Add the item to the order. And then call the CompositeOrderProcessor on the order to have everything recalculated.

$order->addItem($orderItem);

$this->container->get('sylius.order_processing.order_processor')->process($order);

Finally you have to save your order using the repository.

58 Chapter 1. The Book

Sylius

/** @var OrderRepositoryInterface $orderRepository */
$orderRepository = $this->container->get('sylius.repository.order');

$orderRepository->add($order);

The Order State Machine

Order has also its own state, which can have the following values:

• cart - before the checkout is completed, it is the initial state of an Order,

• new - when checkout is completed the cart is transformed into a new order,

• fulfilled - when the order payments and shipments are completed,

• cancelled - when the order was cancelled.

Tip: The state machine of order is an obvious extension to the state machine of checkout.

1.1. The Book 59

Sylius

Shipments of an Order

An Order in Sylius holds a collection of Shipments on it. Each shipment in that collection has its own shipping
method and has its own state machine. This lets you to divide an order into several different shipments that have own
shipping states (like sending physical objects via DHL and sending a link to downloadable files via e-mail).

Tip: If you are not familiar with the shipments concept check the documentation.

State machine of Shipping in an Order

How to add a Shipment to an Order?

You will need to create a shipment, give it a desired shipping method and add it to the order. Remember to process the
order using order processor and then flush the order manager.

/** @var ShipmentInterface $shipment */
$shipment = $this->container->get('sylius.factory.shipment')->createNew();

(continues on next page)

60 Chapter 1. The Book

Sylius

(continued from previous page)

$shipment->setMethod($this->container->get('sylius.repository.shipping_method')->
→˓findOneBy(['code' => 'UPS']));

$order->addShipment($shipment);

$this->container->get('sylius.order_processing.order_processor')->process($order);
$this->container->get('sylius.manager.order')->flush();

Shipping costs of an Order

Shipping costs of an order are stored as Adjustments. When a new shipment is added to a cart the order processor
assigns a shipping adjustment to the order that holds the cost.

Shipping a Shipment with a state machine transition

Just like in every state machine you can execute its transitions manually. To ship a shipment of an order you have to
apply two transitions request_shipping and ship.

$stateMachineFactory = $this->container->get('sm.factory');

$stateMachine = $stateMachineFactory->get($order, OrderShippingTransitions::GRAPH);
$stateMachine->apply(OrderShippingTransitions::TRANSITION_REQUEST_SHIPPING);
$stateMachine->apply(OrderShippingTransitions::TRANSITION_SHIP);

$this->container->get('sylius.manager.order')->flush();

After that the shippingState of your order will be shipped.

Payments of an Order

An Order in Sylius holds a collection of Payments on it. Each payment in that collection has its own payment method
and has its own payment state. It lets you to divide paying for an order into several different methods that have own
payment states.

Tip: If you are not familiar with the Payments concept check the documentation.

1.1. The Book 61

Sylius

State machine of Payment in an Order

How to add a Payment to an Order?

You will need to create a payment, give it a desired payment method and add it to the order. Remember to process the
order using order processor and then flush the order manager.

/** @var PaymentInterface $payment */
$payment = $this->container->get('sylius.factory.payment')->createNew();

(continues on next page)

62 Chapter 1. The Book

Sylius

(continued from previous page)

$payment->setMethod($this->container->get('sylius.repository.payment_method')->
→˓findOneBy(['code' => 'offline']));

$payment->setCurrencyCode($currencyCode);

$order->addPayment($payment);

Completing a Payment with a state machine transition

Just like in every state machine you can execute its transitions manually. To pay for a payment of an order you have
to apply two transitions request_payment and pay.

$stateMachineFactory = $this->container->get('sm.factory');

$stateMachine = $stateMachineFactory->get($order, OrderPaymentTransitions::GRAPH);
$stateMachine->apply(OrderPaymentTransitions::TRANSITION_REQUEST_PAYMENT);
$stateMachine->apply(OrderPaymentTransitions::TRANSITION_PAY);

$this->container->get('sylius.manager.order')->flush();

If it was the only payment assigned to that order now the paymentState of your order will be paid.

Learn more

• Order - Component Documentation

• Order - Bundle Documentation

Taxation

Sylius’ taxation system allows you to apply appropriate taxes for different items, billing zones and using custom
calculators.

Tax Categories

In order to process taxes in your store, you need to configure at least one TaxCategory, which represents a specific
type of merchandise. If all your items are taxed with the same rate, you can have a simple “Taxable Goods” category
assigned to all items.

If you sell various products and some of them have different taxes applicable, you could create multiple categories.
For example, “Clothing”, “Books” and “Food”.

Additionally to tax categories, you can have different zones, in order to apply correct taxes for customers coming from
any country in the world.

How to create a TaxCategory programmatically?

In order to create a TaxCategory use the dedicated factory. Your TaxCategory requires a name and a code.

1.1. The Book 63

Sylius

/** @var TaxCategoryInterface $taxCategory */
$taxCategory = $this->container->get('sylius.factory.tax_category')->createNew();

$taxCategory->setCode('taxable_goods');
$taxCategory->setName('Taxable Goods');

$this->container->get('sylius.repository.tax_category')->add($taxCategory);

Since now you will have a new TaxCategory available.

How to set a TaxCategory on a ProductVariant?

In order to have taxes calculated for your products you have to set TaxCategories for each ProductVariant you create.
Read more about Products and Variants here.

/** @var TaxCategoryInterface $taxCategory */
$taxCategory = $this->container->get('sylius.repository.tax_category')->findOneBy([
→˓'code' => 'taxable_goods']);

/** @var ProductVariantInterface $variant */
$variant = $this>container->get('sylius.repository.product_variant')->findOneBy(['code
→˓' => 'mug']);

$variant->setTaxCategory($taxCategory);

Tax Rates

A tax rate is essentially a percentage amount charged based on the sales price. Tax rates also contain other important
information:

• Whether product prices are inclusive of this tax

• The zone in which the order address must fall within

• The tax category that a product must belong to in order to be considered taxable

• Calculator to use for computing the tax

TaxRates included in price

The TaxRate entity has a field for configuring if you would like to have taxes included in the price of a subject or not.

If you have a TaxCategory with a 23% VAT TaxRate includedInPrice ($taxRate->isIncludedInPrice()
returns true), then the price shown on the ProductVariant in that TaxCategory will be increased by 23% all the time.
See the Behat scenario below:

Given the store has included in price "VAT" tax rate of 23%
And the store has a product "T-Shirt" priced at "$10.00"
When I add product "T-Shirt" to my cart
Then my cart total should be "$10.00"
And my cart taxes should be "$1.87"

If the TaxRate will not be included ($taxRate->isIncludedInPrice() returns false) then the price of
ProductVariant will be shown without taxes, but when this ProductVariant will be added to cart taxes will be shown in
the Taxes Total in the cart. See the Behat scenario below:

64 Chapter 1. The Book

Sylius

Given the store has excluded from price "VAT" tax rate of 23%
And the store has a product "T-Shirt" priced at "$10.00"
When I add product "T-Shirt" to my cart
Then my cart total should be "$12.30"
And my cart taxes should be "$2.30"

How to create a TaxRate programmatically?

Note: Before creating a tax rate you need to know that you can have different tax zones, in order to apply correct
taxes for customers coming from any country in the world. To understand how zones work, please refer to the Zones
chapter of this book.

Use a factory to create a new, empty TaxRate. Provide a code, a name. Set the amount of charge in float. Then
choose a calculator and zone (retrieved from the repository beforehand).

Finally you can set the TaxCategory of your new TaxRate.

/** @var TaxRateInterface $taxRate */
$taxRate = $this->container->get('sylius.factory.tax_rate')->createNew();

$taxRate->setCode('7%');
$taxRate->setName('7%');
$taxRate->setAmount(0.07);
$taxRate->setCalculator('default');

// Get a Zone from the repository, for example the 'US' zone
/** @var ZoneInterface $zone */
$zone = $this->container->get('sylius.repository.zone')->findOneBy(['code' => 'US']);

$taxRate->setZone($zone);

// Get a TaxCategory from the repository, for example the 'alcohol' category
/** @var TaxCategoryInterface $taxCategory */
$taxCategory = $this->container->get('sylius.repository.tax_category')->findOneBy([
→˓'code' => 'alcohol']);

$taxRate->setCategory($taxCategory);

$this->container->get('sylius.repository.tax_rate')->add($taxRate);

Default Tax Zone

The default tax zone concept is used for situations when we want to show taxes included in price even when we do
not know the address of the Customer, therefore we cannot choose a proper Zone, which will have proper TaxRates.

Since we are using the concept of Channels, we will use the Zone assigned to the Channel as default Zone for
Taxation.

Note: To understand how zones work, please refer to the Zones chapter of this book.

1.1. The Book 65

http://docs.sylius.com/en/latest/book/customers/addresses/zones.html
http://docs.sylius.com/en/latest/book/customers/addresses/zones.html

Sylius

Applying Taxes

For applying Taxes Sylius is using the OrderTaxesProcessor, which has the services that implement the OrderTaxe-
sApplicatorInterface inside.

Calculators

For calculating Taxes Sylius is using the DefaultCalculator. You can create your custom calculator for taxes by
creating a class that implements the CalculatorInterface and registering it as a sylius.tax_calculator.
your_calculator_name service.

Learn more

• Taxation - Bundle Documentation

• taxation - Component Documentation

Adjustments

Adjustment is a resource closely connected to the Orders’ concept. It influences the order’s total.

Adjustments may appear on the Order, the OrderItems and the OrderItemUnits.

There are a few types of adjustments in Sylius:

• Order Promotion Adjustments,

• OrderItem Promotion Adjustments,

• OrderItemUnit Promotion Adjustments,

• Shipping Adjustments,

• Shipping Promotion Adjustments,

• Tax Adjustments

And they can be generally divided into three groups: promotion adjustments, shipping adjustments and taxes
adjustments.

Also note that adjustments can be either positive: charges (with a +) or negative: discounts (with a -).

How to create an Adjustment programmatically?

The Adjustments alone are a bit useless. They should be created alongside Orders.

As usual, get a factory and create an adjustment. Then give it a type - you can find all the available types on the
AdjustmentInterface. The adjustment needs also the amount - which is the amount of money that will be added to
the orders total.

Note: The amount is always saved in the base currency.

Additionally you can set the label that will be displayed on the order view and whether your adjustment is neutral
- neutral adjustments do not affect the order’s total (like for example taxes included in price).

66 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/OrderProcessing/OrderTaxesProcessor.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Taxation/Applicator/OrderTaxesApplicatorInterface.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Taxation/Applicator/OrderTaxesApplicatorInterface.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Taxation/Calculator/DefaultCalculator.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Taxation/Calculator/CalculatorInterface.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Model/AdjustmentInterface.php

Sylius

/** @var AdjustmentInterface $adjustment */
$adjustment = $this->container->get('sylius.factory.adjustment')->createNew();

$adjustment->setType(AdjustmentInterface::ORDER_PROMOTION_ADJUSTMENT);
$adjustment->setAmount(200);
$adjustment->setNeutral(false);
$adjustment->setLabel('Test Promotion Adjustment');

$order->addAdjustment($adjustment);

Note: Remember that if you are creating OrderItem adjustments you have to add them on the OrderItem level. The
same happens with the OrderItemUnit adjustments, which have to be added on the OrderItemUnit level.

To see changes on the order you need to update it in the database.

$this->container->get('sylius.manager.order')->flush();

Learn more

• Promotions - Concept Documentation

• Taxation - Concept Documentation

• Shipments - Concept Documentation

Promotions

The system of Promotions in Sylius is really flexible. It is a combination of promotion rules and actions.

Promotions have a few parameters - a unique code, name, usageLimit, the period of time when it works. There
is a possibility to define exclusive promotions (no other can be applied if an exclusive promotion was applied) and
priority that is useful for them, because the exclusive promotion should get the top priority.

Tip: The usageLimit of a promotion is the total number of times this promotion can be used.

How to create a Promotion programmatically?

Just as usual, use a factory. The promotion needs a code and a name.

/** @var PromotionInterface $promotion */
$promotion = $this->container->get('sylius.factory.promotion')->createNew();

$promotion->setCode('simple_promotion_1');
$promotion->setName('Simple Promotion');

Of course an empty promotion would be useless - it is just a base for adding Rules and Actions. Let’s see how to
make it functional.

1.1. The Book 67

Sylius

Promotion Rules

The promotion Rules restrict in what circumstances a promotion will be applied. An appropriate RuleChecker (each
Rule type has its own RuleChecker) may check if the Order:

• Contains a number of items from a specified taxon (for example: contains 4 products that are categorized as
t-shirts)

• Has a specified total price of items from a given taxon (for example: all mugs in the order cost 20$ in total)

• Has total price of at least a defined value (for example: the orders’ items total price is equal at least 50$)

And many more similar, suitable to your needs.

Rule Types

The types of rules that are configured in Sylius by default are:

• Cart Quantity - checks if there is a given amount of items in the cart,

• Item Total - checks if items in the cart cost a given amount of money,

• Taxon - checks if there is at least one item from given taxons in the cart,

• Items From Taxon Total - checks in the cart if items from a given taxon cost a given amount of money,

• Nth Order - checks if this is for example the second order made by the customer,

• Shipping Country - checks if the order’s shipping address is in a given country.

How to create a new PromotionRule programmatically?

Creating a PromotionRule is really simple since we have the PromotionRuleFactory. It has dedicated methods for
creating all types of rules available by default.

In the example you can see how to create a simple Cart Quantity rule. It will check if there are at least 5 items in the
cart.

/** @var PromotionRuleFactoryInterface $ruleFactory */
$ruleFactory = $this->container->get('sylius.factory.promotion_rule');

$quantityRule = $ruleFactory->createCartQuantity('5');

// add your rule to the previously created Promotion
$promotion->addRule($quantityRule);

Note: Rules are just constraints that have to be fulfilled by an order to make the promotion eligible. To make
something happen to the order you will need Actions.

PromotionRules configuration reference

Each PromotionRule type has a very specific structure of its configuration array:

68 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Factory/PromotionRuleFactory.php

Sylius

PromotionRule type Rule Configuration Array
cart_quantity ['count' => $count]
item_total [$channelCode => ['amount' => $amount]]
has_taxon ['taxons' => $taxons]
total_of_items_from_taxon[$channelCode => ['taxon' => $taxonCode, 'amount' =>

$amount]]
nth_order ['nth' => $nth]
contains_product ['product_code' => $productCode]

Promotion Actions

Promotion Action is basically what happens when the rules of a Promotion are fulfilled, what discount is applied on
the whole Order (or its Shipping cost).

There are a few kinds of actions in Sylius:

• fixed discount on the order (for example: -5$ off the order total)

• percentage discount on the order (for example: -10% on the whole order)

• fixed unit discount (for example: -1$ off the order total but distributed and applied on each order item unit)

• percentage unit discount (for example: -10% off the order total but distributed and applied on each order item
unit)

• add product (for example: gives a free bonus sticker)

• shipping discount (for example: -6$ on the costs of shipping)

Tip: Actions are applied on all items in the Order. If you are willing to apply discounts on specific items in the order
check Filters at the bottom of this article.

How to create an PromotionAction programmatically?

In order to create a new PromotionAction we can use the dedicated PromotionActionFactory.

It has special methods for creating all types of actions available by default. In the example below you can how to
create a simple Fixed Discount action, that reduces the total of an order by 10$.

/** @var PromotionActionFactoryInterface $actionFactory */
$actionFactory = $this->container->get('sylius.factory.promotion_action');

$action = $actionFactory->createFixedDiscount(10);

// add your action to the previously created Promotion
$promotion->addAction($action);

Note: All Actions are assigned to a Promotion and are executed while the Promotion is applied. This happens via the
CompositeOrderProcessor service. See details of applying Promotions below.

And finally after you have an PromotionAction and a PromotionRule assigned to the Promotion add it to the
repository.

1.1. The Book 69

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Factory/PromotionActionFactory.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Order/Processor/CompositeOrderProcessor.php

Sylius

$this->container->get('sylius.repository.promotion')->add($promotion);

PromotionActions configuration reference

Each PromotionAction type has a very specific structure of its configuration array:

PromotionAction type Action Configuration Array
order_fixed_discount [$channelCode => ['amount' => $amount]]
unit_fixed_discount [$channelCode => ['amount' => $amount]]
order_percentage_discount ['percentage' => $percentage]
unit_percentage_discount [$channelCode => ['percentage' =>

$percentage]]
shipping_percentage_discount ['percentage' => $percentage]

Applying Promotions

Promotions in Sylius are handled by the PromotionProcessor which inside uses the PromotionApplicator.

The PromotionProcessor’s method process() is executed on the subject of promotions - an Order:

• firstly it iterates over the promotions of a given Order and first reverts them all,

• then it checks the eligibility of all promotions available in the system on the given Order

• and finally it applies all the eligible promotions to that order.

How to apply a Promotion manually?

Let’s assume that you would like to apply a 10% discount on everything somewhere in your code.

To achieve that, create a Promotion with an PromotionAction that gives 10% discount. You don’t need rules.

/** @var PromotionInterface $promotion */
$promotion = $this->container->get('sylius.factory.promotion')->createNew();

$promotion->setCode('discount_10%');
$promotion->setName('10% discount');

/** @var PromotionActionFactoryInterface $actionFactory */
$actionFactory = $this->container->get('sylius.factory.promotion_action');

$action = $actionFactory->createPercentageDiscount(10);

$promotion->addAction($action);

$this->container->get('sylius.repository.promotion')->add($promotion);

// and now get the PromotionApplicator and use it on an Order (assuming that you have
→˓one)
$this->container->get('sylius.promotion_applicator')->apply($order, $promotion);

70 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Promotion/Processor/PromotionProcessor.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Promotion/Action/PromotionApplicator.php

Sylius

Promotion Filters

Filters are really handy when you want to apply promotion’s actions to groups of products in an Order. For example if
you would like to apply actions only on products from a desired taxon - use the available by default TaxonFilter.

Read these scenarios regarding promotion filters to have a better understanding of them.

Learn more

• Promotion - Component Documentation

• Promotion - Bundle Documentation

• How to create a custom promotion rule?

• How to create a custom promotion action?

Coupons

The concept of coupons is closely connected to the Promotions Concept.

Coupon Parameters

A Coupon besides a code has a date when it expires, the usageLimit and it counts how many times it was already
used.

How to create a coupon with a promotion programmatically?

Warning: The promotion has to be couponBased = true in order to be able to hold a collection of Coupons
that belong to it.

Let’s create a promotion that will have a single coupon that activates the free shipping promotion.

/** @var PromotionInterface $promotion */
$promotion = $this->container->get('sylius.factory.promotion')->createNew();

$promotion->setCode('free_shipping');
$promotion->setName('Free Shipping');

Remember to set a channel for your promotion and to make it couponBased!

$promotion->addChannel($this->container->get('sylius.repository.channel')->findOneBy([
→˓'code' => 'US_Web_Store']));

$promotion->setCouponBased(true);

Then create a coupon and add it to the promotion:

1.1. The Book 71

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Promotion/Filter/TaxonFilter.php
https://github.com/Sylius/Sylius/blob/master/features/promotion/receiving_discount/receiving_fixed_discount_on_products_from_specific_taxon.feature

Sylius

/** @var CouponInterface $coupon */
$coupon = $this->container->get('sylius.factory.promotion_coupon')->createNew();

$coupon->setCode('FREESHIPPING');

$promotion->addCoupon($coupon);

Now create an PromotionAction that will take place after applying this promotion - 100% discount on shipping

/** @var PromotionActionFactoryInterface $actionFactory */
$actionFactory = $this->container->get('sylius.factory.promotion_action');

// Provide the amount in float (1 = 100%, 0.1 = 10%)
$action = $actionFactory->createShippingPercentageDiscount(1);

$promotion->addAction($action);

$this->container->get('sylius.repository.promotion')->add($promotion);

Finally to see the effects of your promotion with coupon you need to apply a coupon on the Order.

How to apply a coupon to an Order?

To apply your promotion with coupon that gives 100% discount on the shipping costs you need an order that has
shipments. Set your promotion coupon on that order - this is what happens when a customer provides a coupon code
during checkout.

And after that call the OrderProcessor on the order to have the promotion applied.

$order->setPromotionCoupon($coupon);

$this->container->get('sylius.order_processing.order_processor')->process($order);

Promotion Coupon Generator

Making up new codes might become difficult if you would like to prepare a lot of coupons at once. That is why Sylius
provides a service that generates random codes for you - CouponGenerator. In its PromotionCouponGeneratorIn-
struction you can define the amount of coupons that will be generated, the length of their codes, expiration date and
usage limit.

// Find a promotion you desire in the repository
$promotion = $this->container->get('sylius.repository.promotion')->findOneBy(['code'
→˓=> 'simple_promotion']);

// Get the CouponGenerator service
/** @var CouponGeneratorInterface $generator */
$generator = $this->container->get('sylius.promotion_coupon_generator');

// Then create a new empty PromotionCouponGeneratorInstruction
/** @var PromotionCouponGeneratorInstructionInterface $instruction */
$instruction = new PromotionCouponGeneratorInstruction();

// By default the instruction will generate 5 coupons with codes of length equal to 6
// You can easily change it with the ``setAmount()`` and ``setLength()`` methods

(continues on next page)

72 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Promotion/Generator/PromotionCouponGenerator.php

Sylius

(continued from previous page)

$instruction->setAmount(10);

// Now use the ``generate()`` method with your instruction on the promotion where you
→˓want to have Coupons
$generator->generate($promotion, $instruction);

The above piece of code will result in a set of 10 coupons that will work with the promotion identified by the
simple_promotion code.

Learn more

• Promotions Concept Documentation

• promotion - Component Documentation

• promotion - Bundle Documentation

Shipments

A Shipment is a representation of a shipping request for an Order. Sylius can attach multiple shipments to each single
Order.

How is a Shipment created for an Order?

Warning: Read more about creating Orders where the process of assigning Shipments is clarified.

The Shipment State Machine

A Shipment that is attached to an Order will have its own state machine with the following states available: cart,
ready, cancelled, shipped.

The allowed transitions between these states are:

transitions:
create:

from: [cart]
to: ready

ship:
from: [ready]
to: shipped

cancel:
from: [ready]
to: cancelled

1.1. The Book 73

Sylius

Shipping Methods

ShippingMethod in Sylius is an entity that represent the way an order can be shipped to a customer.

How to create a ShippingMethod programmatically?

As usual use a factory to create a new ShippingMethod. Give it a code, set a desired shipping calculator and set a
zone. It also need a configuration, for instance of the amount (cost). At the end add it to the system using a repository.

$shippingMethod = $this->container->get('sylius.factory.shipping_method')->
→˓createNew();

$shippingMethod->setCode('DHL');
$shippingMethod->setCalculator(DefaultCalculators::FLAT_RATE);
$shippingMethod->setConfiguration(['amount' => 50]);

$zone = $this->container->get('sylius.repository.zone')->findOneByCode('US');
$shippingMethod->setZone($zone);

$this->container->get('sylius.repository.shipping_method')->add($shippingMethod);

In order to have your shipping method available in checkout add it to a desired channel.

74 Chapter 1. The Book

Sylius

$channel->addShippingMethod($shippingMethod);

Shipping Zones

Sylius has an approach of Zones used also for shipping. As in each e-commerce you may be willing to ship only to
certain countries for example. Therefore while configuring your ShippingMethods pay special attention to the zones
you are assigning to them. You have to prepare methods for each zone, because the available methods are retrieved for
the zone the customer has basing on his address.

Shipping Cost Calculators

The shipping cost calculators are services that are used to calculate the cost for a given shipment.

The CalculatorInterface has a method calculate() that takes object with a configuration and returns integer that
is the cost of shipping for that subject. It also has a getType() method that works just like in the forms.

To select a proper service we have a one that decides for us - the DelegatingCalculator. Basing on the ShippingMethod
assigned on the Shipment it will get its calculator type and configuration and calculate the cost properly.

$shippingCalculator = $this->container->get('sylius.shipping_calculator');

$cost = $shippingCalculator->calculate($shipment);

Built-in Calculators

The already defined calculators in Sylius are described as constants in the SyliusComponentShippingCalculatorDe-
faultCalculators

• FlatRateCalculator - just returns the amount from the ShippingMethod’s configuration.

• PerUnitRateCalculator - returns the amount from the ShippingMethod’s configuration multiplied by the
units count.

Shipment complete events

There are two events that are triggered on the shipment ship action:

Event id
sylius.shipment.pre_ship
sylius.shipment.post_ship

Learn more

• Shipping - Component Documentation

1.1. The Book 75

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Shipping/Calculator/CalculatorInterface.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Shipping/Calculator/DelegatingCalculator.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Shipping/Calculator/DefaultCalculators.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Shipping/Calculator/DefaultCalculators.php

Sylius

Payments

Sylius contains a very flexible payments management system with support for many gateways (payment providers).
We are using a payment abstraction library - Payum, which handles all sorts of capturing, refunding and recurring
payments logic.

On Sylius side, we integrate it into our checkout and manage all the payment data.

Payment

Every payment in Sylius, successful or failed, is represented by the Payment model, which contains basic information
and a reference to appropriate order.

Payment State Machine

A Payment that is assigned to an order will have it’s own state machine with a few available states: cart, new,
processing, completed, failed, cancelled, refunded.

The available transitions between these states are:

transitions:
create:

from: [cart]
to: new

process:
from: [new]
to: processing

complete:
from: [new, processing]
to: completed

fail:
from: [new, processing]
to: failed

cancel:
from: [new, processing]
to: cancelled

refund:
from: [completed]
to: refunded

76 Chapter 1. The Book

https://github.com/Payum/Payum

Sylius

Of course, you can define your own states and transitions to create a workflow, that perfectly matches your needs. Full
configuration can be seen in the PaymentBundle/Resources/config/app/state_machine.yml.

Changes to payment happen through applying appropriate transitions.

How to create a Payment programmatically?

We cannot create a Payment without an Order, therefore let’s assume that you have an Order to which you will assign
a new payment.

1.1. The Book 77

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/PaymentBundle/Resources/config/app/state_machine.yml

Sylius

$payment = $this->container->get('sylius.factory.payment')->createNew();

$payment->setOrder($order);
$payment->setCurrencyCode('USD');

$this->container->get('sylius.repository.payment')->add($payment);

Tip: Not familiar with the Order concept? Check here.

Payment Methods

A PaymentMethod represents a way that your customer pays during the checkout process. It holds a reference to a
specific gateway with custom configuration. Gateway is configured for each payment method separately using the
payment method form.

How to create a PaymentMethod programmatically?

As usual, use a factory to create a new PaymentMethod and give it a unique code.

$paymentMethod = $this->container->get('sylius.factory.payment_method')->
→˓createWithGateway('offline');
$paymentMethod->setCode('ALFA1');

$this->container->get('sylius.repository.payment_method')->add($paymentMethod);

In order to have your new payment method available in the checkout remember to add your desired channel to the
payment method:

$paymentMethod->addChannel($channel)

Payment Gateway configuration

Payment Gateways that already have a Sylius bridge

First you need to create the configuration form type for your gateway. Have a look at the configuration form types of
Paypal and Stripe.

Then you should register its configuration form type with sylius.gateway_configuration_type tag. After
that it will be available in the Admin panel in the gateway choice dropdown.

Tip: If you are not sure how your configuration form type should look like, head to Payum documentation.

Other Payment Gateways

Note: Learn more about integrating payment gateways in the Payum docs.

78 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/PayumBundle/Form/Type/PaypalGatewayConfigurationType.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/PayumBundle/Form/Type/StripeGatewayConfigurationType.php
https://github.com/Payum/Payum
https://github.com/Payum/Payum/blob/master/docs/index.md

Sylius

When the Payment Gateway you are trying to use does have a bridge available and you integrate them on your own,
use our guide on extension development.

Tip: You’ll probably need also this kind of configuration in your app/config/config.yml for the gateway’s
factory:

payum:
gateways:

yourgateway:
factory: yourgateway

Troubleshooting

Sylius stores the payment output inside the details column of the sylius_payment table. It can provide valuable
information when debugging the payment process.

PayPal Error Code 10409

The 10409 code, also known as the “Checkout token was issued for a merchant account other than yours” error. You
have most likely changed the PayPal credentials from config.yml during the checkout process. Clear the cache
and try again:

bin/console cache:clear

Payment complete events

There are two events that are triggered on the payment complete action:

Event id
sylius.payment.pre_complete
sylius.payment.post_complete

Learn more

• Payment - Component Documentation

• Payum - Project Documentation

Checkout

Checkout is a process that begins when the Customer decides to finish their shopping and pay for their order. The
process of specifying address, payment and a way of shipping transforms the Cart into an Order.

1.1. The Book 79

https://github.com/Payum/Payum/blob/master/docs/index.md

Sylius

Checkout State Machine

The Order Checkout state machine has 5 states available: cart, addressed, shipping_selected,
payment_selected, completed and a set of defined transitions between them. These states are saved as the
checkoutState of the Order.

Besides the steps of checkout, each of them can be done more than once. For instance if the Customer changes their
mind and after selecting payment they want to change the shipping address they have already specified, they can of
course go back and readdress it.

The transitions on the order checkout state machine are:

transitions:
address:

from: [cart]
to: addressed

readdress:
from: [payment_selected, shipping_selected, addressed]
to: cart

select_shipping:
from: [addressed]
to: shipping_selected

reselect_shipping:
from: [payment_selected, shipping_selected]
to: addressed

select_payment:
from: [shipping_selected]
to: payment_selected

reselect_payment:
from: [payment_selected]
to: shipping_selected

complete:
from: [payment_selected]
to: completed

80 Chapter 1. The Book

Sylius

Steps of Checkout

Checkout in Sylius is divided into 4 steps. Each of these steps occurs when the Order goes into a certain state. See the
Checkout state machine in the state_machine.yml together with the routing file for checkout: checkout.yml.

Note: Before performing Checkout you need to have an Order created.

Addressing

This is a step where the customer provides both shipping and billing addresses.

1.1. The Book 81

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/Resources/config/app/state_machine.yml
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/Resources/config/routing/checkout.yml

Sylius

Transition after step Template
cart-> addressed SyliusShopBundle:Checkout:addressing.html.twig

How to perform the Addressing Step programmatically?

Firstly if the Customer is not yet set on the Order it will be assigned depending on the case:

• An already logged in User - the Customer is set for the Order using the CartBlamerListener, that determines the
user basing on the event.

• An existent User that is not logged in - If there is an account in the system registered under the e-mail that has
been provided - they are asked for a password to log in before continuing inside the addressing form.

• A Customer that was present in the system before (we’ve got their e-mail) - the Customer instance is updated
via cascade, the order is assigned to it.

• A new Customer with unknown e-mail - a new Customer instance is created and assigned to the order.

Hint: If you do not understand the Users and Customers concept in Sylius go to the Users Concept documentation.

The typical Address consists of: country, city, street and postcode - to assign it to an Order either create it manually
or retrieve from the repository.

/** @var AddressInterface $address */
$address = $this->container->get('sylius.factory.address')->createNew();

$address->setFirstName('Anne');
$address->setLastName('Shirley');
$address->setStreet('Avonlea');
$address->setCountryCode('CA');
$address->setCity('Canada');
$address->setPostcode('C0A 1N0');

$order->setShippingAddress($address);
$order->setBillingAddress($address);

Having the Customer and the Address set you can apply a state transition to your order. Get the StateMachine for the
Order via the StateMachineFactory with a proper schema, and apply a transition and of course flush your order after
that via the manager.

$stateMachineFactory = $this->container->get('sm.factory');

$stateMachine = $stateMachineFactory->get($order, OrderCheckoutTransitions::GRAPH);
$stateMachine->apply(OrderCheckoutTransitions::TRANSITION_ADDRESS);

$this->container->get('sylius.manager.order')->flush();

What happens during the transition?

The method process($order) of the CompositeOrderProcessor is run.

82 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/EventListener/CartBlamerListener.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Order/Processor/CompositeOrderProcessor.php

Sylius

Selecting shipping

It is a step where the customer selects the way their order will be shipped to them. Basing on the ShippingMethods
configured in the system the options for the Customer are provided together with their prices.

Transition after step Template
addressed-> shipping_selected SyliusShopBundle:Checkout:shipping.html.twig

How to perform the Selecting shipping Step programmatically?

Before approaching this step be sure that your Order is in the addressed state. In this state your order will al-
ready have a default ShippingMethod assigned, but in this step you can change it and have everything recalculated
automatically.

Firstly either create new (see how in the Shipments concept) or retrieve a ShippingMethod from the repository to
assign it to your order’s shipment created defaultly in the addressing step.

// Let's assume you have a method with code 'DHL' that has everything set properly
$shippingMethod = $this->container->get('sylius.repository.shipping_method')->
→˓findOneByCode('DHL');

// Shipments are a Collection, so even though you have one Shipment by default you
→˓have to iterate over them
foreach ($order->getShipments() as $shipment) {

$shipment->setMethod($shippingMethod);
}

After that get the StateMachine for the Order via the StateMachineFactory with a proper schema, and apply a proper
transition and flush the order via the manager.

$stateMachineFactory = $this->container->get('sm.factory');

$stateMachine = $stateMachineFactory->get($order, OrderCheckoutTransitions::GRAPH)
$stateMachine->apply(OrderCheckoutTransitions::TRANSITION_SELECT_SHIPPING);

$this->container->get('sylius.manager.order')->flush();

What happens during the transition?

The method process($order) of the CompositeOrderProcessor is run. Here this method is responsible for:
controlling the shipping charges which depend on the chosen ShippingMethod, controlling the promotions that
depend on the shipping method.

Skipping shipping step

What if in the order you have only products that do not require shipping (they are downloadable for example)?

Note: When all of the ProductVariants of the order have the shippingRequired property set to false, then
Sylius assumes that the whole order does not require shipping, and the shipping step of checkout will be skipped.

1.1. The Book 83

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Order/Processor/CompositeOrderProcessor.php

Sylius

Selecting payment

This is a step where the customer chooses how are they willing to pay for their order. Basing on the PaymentMethods
configured in the system the possibilities for the Customer are provided.

Transition after step Template
shipping_selected->
payment_selected

SyliusShopBundle:Checkout:payment.html.
twig

How to perform the Selecting payment step programmatically?

Before this step your Order should be in the shipping_selected state. It will have a default Payment selected
after the addressing step, but in this step you can change it.

Firstly either create new (see how in the Payments concept) or retrieve a PaymentMethod from the repository to
assign it to your order’s payment created defaultly in the addressing step.

// Let's assume that you have a method with code 'paypal' configured
$paymentMethod = $this->container->get('sylius.repository.payment_method')->
→˓findOneByCode('paypal');

// Payments are a Collection, so even though you hve one Payment by default you have
→˓to iterate over them
foreach ($order->getPayments() as $payment) {

$payment->setMethod($paymentMethod);
}

After that get the StateMachine for the Order via the StateMachineFactory with a proper schema, and apply a proper
transition and flush the order via the manager.

$stateMachineFactory = $this->container->get('sm.factory');

$stateMachine = $stateMachineFactory->get($order, OrderCheckoutTransitions::GRAPH)
$stateMachine->apply(OrderCheckoutTransitions::TRANSITION_SELECT_PAYMENT);

$this->container->get('sylius.manager.order')->flush();

What happens during the transition?

The method process($order) of the CompositeOrderProcessor is run and checks all the adjustments on the order.

Finalizing

In this step the customer gets an order summary and is redirected to complete the payment they have selected.

Transition after step Template
payment_selected-> completed SyliusShopBundle:Checkout:summary.html.twig

How to complete Checkout programmatically?

Before executing the completing transition you can set some notes to your order.

84 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Order/Processor/CompositeOrderProcessor.php

Sylius

$order->setNotes('Thank you dear shop owners! I am allergic to tape so please use
→˓something else for packaging.')

After that get the StateMachine for the Order via the StateMachineFactory with a proper schema, and apply a proper
transition and flush the order via the manager.

$stateMachineFactory = $this->container->get('sm.factory');

$stateMachine = $stateMachineFactory->get($order, OrderCheckoutTransitions::GRAPH);
$stateMachine->apply(OrderCheckoutTransitions::TRANSITION_COMPLETE);

$this->container->get('sylius.manager.order')->flush();

What happens during the transition?

• The Order will have the checkoutState - completed,

• The Order will have the general state - new instead of cart it has had before the transition,

• When the Order is transitioned from cart to new the paymentState is set to awaiting_payment and the
shippingState to ready

The Checkout is finished after that.

Checkout related events

On each step of checkout a dedicated event is triggered.

Event id
sylius.order.pre_address
sylius.order.post_address
sylius.order.pre_select_shipping
sylius.order.post_select_shipping
sylius.order.pre_payment
sylius.order.post_payment
sylius.order.pre_complete
sylius.order.post_complete

Learn more

• State Machine - Documentation

• Orders - Concept Documentation

• Orders

• Taxation

• Adjustments

• Promotions

• Coupons

• Payments

• Shipments

1.1. The Book 85

Sylius

• Checkout

• Orders

• Taxation

• Adjustments

• Promotions

• Coupons

• Payments

• Shipments

• Checkout

1.1.8 Themes

Here you will learn basics about the Theming concept of Sylius. How to change the theme of your shop? keep reading!

Themes

Themes

Theming is a method of customizing how your channels look like in Sylius. Each channel can have a different theme.

What is the purpose of using themes?

There are some criteria that you have to analyze before choosing either standard Symfony template overriding or
themes.

When you should choose standard template overriding:

• you have only one channel

• or you do not need different looks/themes on each of you channels

• you need only basic changes in the views (changing colors, some blocks rearranging)

When you should use Sylius themes:

• you have more than one channel for a single Sylius instance

• and you want each channel to have their own look and behaviour

• you change a lot of things in the views

How to enable themes in a project?

To use themes inside of your project you need to add these few lines to your app/config/config.yml.

sylius_theme:
sources:

filesystem: ~

86 Chapter 1. The Book

Sylius

How to create themes?

Let’s see how to customize the login view inside of your custom theme.

1. Inside of the app/themes/ directory create a new directory for your theme:

Let it be CrimsonTheme/ for instance.

2. Create composer.json for your theme:

{
"name": "acme/crimson-theme",
"authors": [

{
"name": "James Potter",
"email": "prongs@example.com"

}
],
"extra": {

"sylius-theme": {
"title": "Crimson Theme"

}
}

}

3. Install theme assets

Theme assets are installed by running the sylius:theme:assets:install command, which is supplementary
for and should be used after assets:install.

bin/console sylius:theme:assets:install

The command run with --symlink or --relative parameters creates symlinks for every installed asset file, not
for entire asset directory (eg. if AcmeBundle/Resources/public/asset.js exists, it creates symlink web/
bundles/acme/asset.js leading to AcmeBundle/Resources/public/asset.js instead of symlink
web/bundles/acme/ leading to AcmeBundle/Resources/public/). When you create a new asset or
delete an existing one, it is required to rerun this command to apply changes (just as the hard copy option works).

Note: Whenever you install a new bundle with assets you will need to run sylius:theme:assets:install
again to make sure they are accessible in your theme.

4. Customize a template:

In order to customize the login view you should take the content of @SyliusShopBundle/views/login.
html.twig file and paste it to your theme directory: app/themes/CrimsonTheme/SyliusShopBundle/
views/login.html.twig

Let’s remove the registration column in this example:

{% extends '@SyliusShop/layout.html.twig' %}

{% form_theme form 'SyliusUiBundle:Form:theme.html.twig' %}

{% import 'SyliusUiBundle:Macro:messages.html.twig' as messages %}

{% block content %}
{% include '@SyliusShop/Login/_header.html.twig' %}

(continues on next page)

1.1. The Book 87

Sylius

(continued from previous page)

<div class="ui padded segment">
<div class="ui one column very relaxed stackable grid">

<div class="column">
<h4 class="ui dividing header">{{ 'sylius.ui.registered_customers

→˓'|trans }}</h4>
<p>{{ 'sylius.ui.if_you_have_an_account_sign_in_with_your_email_

→˓address'|trans }}.</p>
{{ form_start(form, {'action': path('sylius_shop_login_check'), 'attr

→˓': {'class': 'ui loadable form', 'novalidate': 'novalidate'}}) }}
{% include '@SyliusShop/Login/_form.html.twig' %}
<button type="submit" class="ui blue submit button">{{ 'sylius.ui.

→˓login'|trans }}</button>
<a href="{{ path('sylius_shop_request_password_reset_token') }}"

→˓class="ui right floated button">{{ 'sylius.ui.forgot_password'|trans }}
{{ form_end(form, {'render_rest': false}) }}

</div>
</div>

</div>
{% endblock %}

Tip: Learn more about customizing templates here.

5. Choose your new theme on the channel:

In the administration panel go to channels and change the theme of your desired channel to Crimson Theme.

88 Chapter 1. The Book

Sylius

6. If changes are not yet visible, clear the cache:

$ php bin/console cache:clear

Learn more

• Theme - Bundle Documentation.

• Themes

• Themes

1.1. The Book 89

Sylius

90 Chapter 1. The Book

CHAPTER 2

The Customization Guide

The Customization Guide is helpful while wanting to adapt Sylius to your personal business needs.

2.1 The Customization Guide

The Customization Guide is helpful while wanting to adapt Sylius to your personal business needs.

2.1.1 Customizing Models

All models in Sylius are placed in the Sylius\Component*ComponentName*\Model namespaces alongside
with their interfaces.

Warning: Many models in Sylius are extended in the Core component. If the model you are willing to override
exists in the Core you should be extending the Core one, not the base model from the component.

Note: Note that there are translatable models in Sylius also. The guide to translatable entities can be found below
the regular one.

Why would you customize a Model?

To give you an idea of some purposes of models customizing have a look at a few examples:

• Add flag field to the Country

• Add secondNumber to the Customer

• Change the reviewSubject of a Review (in Sylius we have ProductReviews but you can imagine for
instance a CustomerReview)

91

Sylius

• Add icon to the PaymentMethod

And of course many similar operations limited only by your imagination. Let’s now see how you should perform such
customizations.

How to customize a Model?

Let’s take the Sylius\Component\Addressing\Country as an example. This one is not extended in Core.
How can you check that?

For the Country run:

$ php bin/console debug:container --parameter=sylius.model.country.class

As a result you will get the Sylius\Component\Addressing\Model\Country - this is the class that you
need to be extending.

Assuming that you would want to add another field on the model - for instance a flag.

1. The first thing to do is to write your own class which will extend the base Country class.

<?php

namespace AppBundle\Entity;

use Sylius\Component\Addressing\Model\Country as BaseCountry;

class Country extends BaseCountry
{

/**
* @var bool

*/
private $flag;

/**
* @return bool|null

*/
public function getFlag(): ?bool
{

return $this->flag;
}

/**
* @param bool $flag

*/
public function setFlag(bool $flag): void
{

$this->flag = $flag;
}

}

2. Next define your entity’s mapping.

The file should be placed in AppBundle/Resources/config/doctrine/Country.orm.yml

AppBundle\Entity\Country:
type: entity
table: sylius_country

(continues on next page)

92 Chapter 2. The Customization Guide

Sylius

(continued from previous page)

fields:
flag:

type: boolean
nullable: true

3. Finally you’ll need to override the model’s class in the app/config/config.yml.

Under the sylius_* where * is the name of the bundle of the model you are customizing, in our case it will be the
SyliusAddressingBundle -> sylius_addressing.

sylius_addressing:
resources:

country:
classes:

model: AppBundle\Entity\Country

4. Update the database. There are two ways to do it.

• via direct database schema update:

$ php bin/console doctrine:schema:update --force

• via migrations:

Which we strongly recommend over updating the schema.

$ php bin/console doctrine:migrations:diff
$ php bin/console doctrine:migrations:migrate

Tip: Read more about the database modifications and migrations in the Symfony documentation here.

5. Additionally if you want to give the administrator an ability to add the flag to any of countries, you’ll need to
update its form type. Check how to do it here.

What happens while overriding Models?

• Parameter sylius.model.country.class contains AppBundle\Entity\Country.

• sylius.repository.country represents Doctrine repository for your new class.

• sylius.manager.country represents Doctrine object manager for your new class.

• sylius.controller.country represents the controller for your new class.

• All Doctrine relations to Sylius\Component\Addressing\Model\Country are using your new class
as target-entity, you do not need to update any mappings.

• CountryType form type is using your model as data_class.

• Sylius\Component\Addressing\Model\Country is automatically turned into Doctrine Mapped Su-
perclass.

How to customize a translatable Model?

One of translatable entities in Sylius is the Shipping Method. Let’s try to extend it with a new field. Shipping methods
may have different delivery time, let’s save it on the estimatedDeliveryTime field.

2.1. The Customization Guide 93

http://symfony.com/doc/current/book/doctrine.html#creating-the-database-tables-schema

Sylius

Just like for regular models you can also check the class of translatable models like that:

$ php bin/console debug:container --parameter=sylius.model.shipping_method.class

1. The first thing to do is to write your own class which will extend the base ShippingMethod class.

<?php

namespace AppBundle\Entity;

use Sylius\Component\Core\Model\ShippingMethod as BaseShippingMethod;
use Sylius\Component\Shipping\Model\ShippingMethodTranslation;

class ShippingMethod extends BaseShippingMethod
{

/**
* @var string

*/
private $estimatedDeliveryTime;

/**
* @return string

*/
public function getEstimatedDeliveryTime(): string
{

return $this->estimatedDeliveryTime;
}

/**
* @param string $estimatedDeliveryTime

*/
public function setEstimatedDeliveryTime(string $estimatedDeliveryTime): void
{

$this->estimatedDeliveryTime = $estimatedDeliveryTime;
}

/**
* {@inheritdoc}

*/
protected function createTranslation(): ShippingMethodTranslation
{

return new ShippingMethodTranslation();
}

}

Note: Remember to set the translation class properly, just like above in the createTranslation() method.

2. Next define your entity’s mapping.

The file should be placed in AppBundle/Resources/config/doctrine/ShippingMethod.orm.yml

AppBundle\Entity\ShippingMethod:
type: entity
table: sylius_shipping_method
fields:

estimatedDeliveryTime:
(continues on next page)

94 Chapter 2. The Customization Guide

Sylius

(continued from previous page)

type: string
nullable: true

3. Finally you’ll need to override the model’s class in the app/config/config.yml.

Under the sylius_* where * is the name of the bundle of the model you are customizing, in our case it will be the
SyliusShippingBundle -> sylius_shipping.

sylius_shipping:
resources:

shipping_method:
classes:

model: AppBundle\Entity\ShippingMethod

4. Update the database. There are two ways to do it.

• via direct database schema update:

$ php bin/console doctrine:schema:update --force

• via migrations:

Which we strongly recommend over updating the schema.

$ php bin/console doctrine:migrations:diff
$ php bin/console doctrine:migrations:migrate

Tip: Read more about the database modifications and migrations in the Symfony documentation here.

5. Additionally if you need to add the estimatedDeliveryTime to any of your shipping methods in the admin
panel, you’ll need to update its form type. Check how to do it here.

Warning: If you want the new field of your entity to be translatable, you need to ex-
tend the Translation class of your entity. In case of the ShippingMethod it would be the
Sylius\Component\Shipping\Model\ShippingMethodTranslation. Also the form on which
you will add the new field should be the TranslationType.

How to customize translatable fields of a translatable Model?

Suppose you want to add a translatable property to a translatable entity, for example to the Shipping Method. Let’s
assume that you would like the Shipping method to include a message with the delivery conditions. Let’s save it on
the deliveryConditions field.

Just like for regular models you can also check the class of translatable models like that:

$ php bin/console debug:container --parameter=sylius.model.shipping_method_
→˓translation.class

1. In order to add a translatable property to your entity you need to define it on the
AppBundle\Entity\ShippingMethodTranslation class of your bundle, that will extend the base
Sylius\Component\Shipping\Model\ShippingMethodTranslation.

2.1. The Customization Guide 95

http://symfony.com/doc/current/book/doctrine.html#creating-the-database-tables-schema

Sylius

<?php

namespace AppBundle\Entity;

use Sylius\Component\Shipping\Model\ShippingMethodTranslation as
→˓BaseShippingMethodTranslation;

class ShippingMethodTranslation extends BaseShippingMethodTranslation
{

/**
* @var string

*/
private $deliveryConditions;

/**
* @return string

*/
public function getDeliveryConditions(): string
{

return $this->deliveryConditions;
}

/**
* @param string $deliveryConditions

*/
public function setDeliveryConditions(string $deliveryConditions): void
{

$this->deliveryConditions = $deliveryConditions;
}

}

2. Next define your translation entity’s mapping.

The translation’s entity file should be placed in AppBundle/Resources/config/doctrine/
ShippingMethodTranslation.orm.yml

AppBundle\Entity\ShippingMethodTranslation:
type: entity
table: sylius_shipping_method_translation
fields:

deliveryConditions:
type: string
nullable: true

3. You’ll need to provide access to the new fields in the ShippingMethod class by extending the base Shipping-
Method class.

<?php

namespace AppBundle\Entity;

use Sylius\Component\Core\Model\ShippingMethod as BaseShippingMethod;

class ShippingMethod extends BaseShippingMethod
{

/**
* @return string

(continues on next page)

96 Chapter 2. The Customization Guide

Sylius

(continued from previous page)

*/
public function getDeliveryConditions(): string
{

return $this->getTranslation()->getDeliveryConditions();
}

/**
* @param string $deliveryConditions

*/
public function setDeliveryConditions(string $deliveryConditions): void
{

$this->getTranslation()->setDeliveryConditions($deliveryConditions);
}

}

Note: Remember that if the original entity is not translatable you will need to initialize the translations collection in
the constructor, and use the TranslatableTrait. Take a careful look at the Sylius translatable entities.

4. As we are overriding not only the translation class but also the base class, we need to create an emty mapping also
for this base class.

The mapping file should be placed in AppBundle/Resources/config/doctrine/ShippingMethod.
orm.yml

AppBundle\Entity\ShippingMethod:
type: entity
table: sylius_shipping_method

5. Finally you’ll need to override the model’s classes in the app/config/config.yml.

Under the sylius_* where * is the name of the bundle of the model you are customizing, in our case it will be the
SyliusShippingBundle -> sylius_shipping.

sylius_shipping:
resources:

shipping_method:
classes:

model: AppBundle\Entity\ShippingMethod
translation:

classes:
model: AppBundle\Entity\ShippingMethodTranslation

6. Update the database. There are two ways to do it.

• via direct database schema update:

$ php bin/console doctrine:schema:update --force

• via migrations:

Which we strongly recommend over updating the schema.

$ php bin/console doctrine:migrations:diff
$ php bin/console doctrine:migrations:migrate

2.1. The Customization Guide 97

Sylius

Tip: Read more about the database modifications and migrations in the Symfony documentation here.

6. Additionally if you need to add the deliveryConditions to any of your shipping methods in the admin panel,
you’ll need to update its form type. Check how to do it here.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.2 Customizing Forms

The forms in Sylius are placed in the Sylius\Bundle*BundleName*\Form\Type namespaces and the ex-
tensions will be placed in AppBundleFormExtension.

Why would you customize a Form?

There are plenty of reasons to modify forms that have already been defined in Sylius. Your business needs may
sometimes slightly differ from our internal assumptions.

You can:

• add completely new fields,

• modify existing fields, make them required, change their HTML class, change labels etc.,

• remove fields that are not used.

How to customize a Form?

If you want to modify the form for the Customer Profile in your system there are a few steps that you should
take. Assuming that you would like to (for example):

• Add a contactHours field,

• Remove the gender field,

• Change the label for the lastName from sylius.form.customer.last_name to app.form.
customer.surname

These will be the steps that you will have to take to achieve that:

1. If you are planning to add new fields remember that beforehand they need to be added on the model that the form
type is based on.

In case of our example if you need to have the contactHours on the model and the entity mapping for
the Customer resource. To get to know how to prepare that go there.

2. Create a Form Extension.

Your form has to extend a proper base class. How can you check that?

For the CustomerProfileType run:

98 Chapter 2. The Customization Guide

http://symfony.com/doc/current/book/doctrine.html#creating-the-database-tables-schema

Sylius

$ php bin/console debug:container sylius.form.type.customer_profile

As a result you will get the Sylius\Bundle\CustomerBundle\Form\Type\CustomerProfileType -
this is the class that you need to be extending.

<?php

namespace AppBundle\Form\Extension;

use Sylius\Bundle\CustomerBundle\Form\Type\CustomerProfileType;
use Symfony\Component\Form\AbstractTypeExtension;
use Symfony\Component\Form\Extension\Core\Type\TextType;
use Symfony\Component\Form\FormBuilderInterface;

final class CustomerProfileTypeExtension extends AbstractTypeExtension
{

/**
* {@inheritdoc}

*/
public function buildForm(FormBuilderInterface $builder, array $options): void
{

// Adding new fields works just like in the parent form type.
$builder->add('contactHours', TextType::class, [

'required' => false,
'label' => 'app.form.customer.contact_hours',

]);

// To remove a field from a form simply call ->remove(`fieldName`).
$builder->remove('gender');

// You can change the label by adding again the same field with a changed
→˓`label` parameter.

$builder->add('lastName', TextType::class, [
'label' => 'app.form.customer.surname',

]);
}

/**
* {@inheritdoc}

*/
public function getExtendedType(): string
{

return CustomerProfileType::class;
}

}

Note: Of course remember that you need to define new labels for your fields in the
app\Resources\translations\messages.en.yml for english contents of your messages.

3. After creating your class, register this extension as a service in the app/config/services.yml:

services:
app.form.extension.type.customer_profile:

class: AppBundle\Form\Extension\CustomerProfileTypeExtension
tags:

(continues on next page)

2.1. The Customization Guide 99

Sylius

(continued from previous page)

- { name: form.type_extension, extended_type:
→˓Sylius\Bundle\CustomerBundle\Form\Type\CustomerProfileType }

Note: Of course remember that you need to render the new fields you have created, and remove the rendering of the
fields that you have removed in your views.

In our case you will need a new template: app/Resources/SyliusShopBundle/views/Account/profileUpdate.html.twig.

In Twig for example you can render your modified form in such a way:

<div class="two fields">
<div class="field">{{ form_row(form.birthday) }}</div>
<div class="field">{{ form_row(form.contactHours) }}</div>

</div>

Need more information?

Warning: Some of the forms already have extensions in Sylius. Learn more about Extensions here.

For instance the ProductVariant admin form is defined under Sylius/Bundle/ProductBundle/
Form/Type/ProductVariantType.php and later extended in Sylius/Bundle/CoreBundle/Form/
Extension/ProductVariantTypeExtension.php. If you again extend the base type form like this:

services:
app.form.extension.type.product_variant:

class: AppBundle\Form\Extension\ProductVariantTypeMyExtension
tags:

- { name: form.type_extension, extended_type:
→˓Sylius\Bundle\ProductBundle\Form\Type\ProductVariantType, priority: -5 }

your form extension will also be executed. Whether before or after the other extensions depends on priority tag set.

Having a look at the extensions and possible additionally defined event handlers can also be useful when form elements
are embedded dynamically, as is done in the ProductVariantTypeExtension by the CoreBundle:

<?php

...

final class ProductVariantTypeExtension extends AbstractTypeExtension
{

/**
* {@inheritdoc}

*/
public function buildForm(FormBuilderInterface $builder, array $options): void
{

...

$builder->addEventListener(FormEvents::PRE_SET_DATA, function (FormEvent
→˓$event) {

$productVariant = $event->getData();

(continues on next page)

100 Chapter 2. The Customization Guide

http://symfony.com/doc/current/form/create_form_type_extension.html

Sylius

(continued from previous page)

$event->getForm()->add('channelPricings', ChannelCollectionType::class, [
'entry_type' => ChannelPricingType::class,
'entry_options' => function (ChannelInterface $channel) use (

→˓$productVariant) {
return [

'channel' => $channel,
'product_variant' => $productVariant,
'required' => false,

];
},
'label' => 'sylius.form.variant.price',

]);
});

}

...
}

The channelPricings get added on FormEvents::PRE_SET_DATA, so when you wish to remove or alter
this form definition, you will also have to set up an event listener and then remove the field:

<?php

...

final class ProductVariantTypeMyExtension extends AbstractTypeExtension
{

...

public function buildForm(FormBuilderInterface $builder, array $options): void
{

...

$builder
->addEventListener(FormEvents::PRE_SET_DATA, function (FormEvent $event) {

$event->getForm()->remove('channelPricings');
})
->addEventSubscriber(new AddCodeFormSubscriber(NULL, ['label' => 'app.

→˓form.my_other_code_label']))
;

...

}
}

Adding constraints inside a form extension

Warning: When adding your constraints dynamically from inside a form extension, be aware to add the correct
validation groups.

2.1. The Customization Guide 101

Sylius

Although it is advised to follow the Validation Customization Guide, it might happen that you want to define the form
constraints from inside the form extension. They will not be used unless the correct validation group(s) has been
added. The example below shows how to add the default sylius group to a constraint.

<?php

...

final class CustomerProfileTypeExtension extends AbstractTypeExtension
{

...

public function buildForm(FormBuilderInterface $builder, array $options): void
{

...

// Adding new fields works just like in the parent form type.
$builder->add('contactHours', TextType::class, [

'required' => false,
'label' => 'app.form.customer.contact_hours',
'constraints' => [

new Range([
'min' => 8,
'max' => 17,
'groups' => ['sylius'],

]),
],

]);

...
}

...
}

Overriding forms completely

Tip: If you need to create a new form type on top of an existing one - create this new alternative form type and define
getParent() to the old one. See details in the Symfony docs.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.3 Customizing Repositories

Warning: In Sylius we are using both default Doctrine repositories and the custom ones. Often you will be
needing to add your very own methods to them. You need to check before which repository is your resource using.

102 Chapter 2. The Customization Guide

http://symfony.com/doc/current/form/create_custom_field_type.html

Sylius

Why would you customize a Repository?

Different sets of different resources can be obtained in various scenarios in your application. You may need for
instance:

• finding Orders by a Customer and a chosen Product

• finding Products by a Taxon

• finding Comments by a Customer

How to customize a Repository?

Let’s assume that you would want to find products that you are running out of in the inventory.

1. Create your own repository class under the AppBundle\Repository namespace. Remember that it has to
extend a proper base class. How can you check that?

For the ProductRepository run:

$ php bin/console debug:container sylius.repository.product

As a result you will get the Sylius\Bundle\CoreBundle\Doctrine\ORM\ProductRepository - this is
the class that you need to be extending.

<?php

namespace AppBundle\Repository;

use Sylius\Bundle\CoreBundle\Doctrine\ORM\ProductRepository as BaseProductRepository;

class ProductRepository extends BaseProductRepository
{

/**
* @param int $limit

*
* @return array

*/
public function findByOnHand(int $limit = 8): array
{

return $this->createQueryBuilder('o')
->addSelect('variant')
->addSelect('translation')
->leftJoin('o.variants', 'variant')
->leftJoin('o.translations', 'translation')
->addOrderBy('variant.onHand', 'ASC')
->setMaxResults($limit)
->getQuery()
->getResult()

;
}

}

We are using the Query Builder in the Repositories. As we are selecting Products we need to have a join to translations,
because they are a translatable resource. Without it in the query results we wouldn’t have a name to be displayed.

We are sorting the results by the count of how many products are still available on hand, which is saved on the onHand
field on the specific variant of each product. Then we are limiting the query to 8 by default, to get only 8 products
that are low in stock.

2.1. The Customization Guide 103

http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/query-builder.html

Sylius

2. In order to use your repository you need to configure it in the app/config/config.yml.

sylius_product:
resources:

product:
classes:

repository: AppBundle\Repository\ProductRepository

3. After configuring the sylius.repository.product service has your findByOnHand()method available.
You can form now on use your method in any Controller.

<?php

public function lowInStockAction()
{

$productRepository = $this->container->get('sylius.repository.product');

$lowInStock = $productRepository->findByOnHand();
}

What happens while overriding Repositories?

• The parameter sylius.repository.product.class contains AppBundle\Repository\ProductRepository.

• The repository service sylius.repository.product is using your new class.

• Under the sylius.repository.product service you have got all methods from the base repository avail-
able plus the one you have added.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.4 Customizing Factories

Warning: Some factories may already be decorated in the Sylius Core. You need to check before decorating
which factory (Component or Core) is your resource using.

Why would you customize a Factory?

Differently configured versions of resources may be needed in various scenarios in your application. You may need
for instance to:

• create a Product with a Supplier (which is your own custom entity)

• create a disabled Product (for further modifications)

• create a ProductReview with predefined description

and many, many more.

104 Chapter 2. The Customization Guide

Sylius

How to customize a Factory?

Let’s assume that you would want to have a possibility to create disabled products.

1. Create your own factory class in the AppBundle\Factory namespace. Remember that it has to implement a
proper interface. How can you check that?

For the ProductFactory run:

$ php bin/console debug:container sylius.factory.product

As a result you will get the Sylius\Component\Product\Factory\ProductFactory - this is the class
that you need to decorate. Take its interface (Sylius\Component\Product\Factory\ProductFactoryInterface)
and implement it.

<?php

namespace AppBundle\Factory;

use Sylius\Component\Product\Model\ProductInterface;
use Sylius\Component\Product\Factory\ProductFactoryInterface;

class ProductFactory implements ProductFactoryInterface
{

/**
* @var ProductFactoryInterface

*/
private $decoratedFactory;

/**
* @param ProductFactoryInterface $factory

*/
public function __construct(ProductFactoryInterface $factory)
{

$this->decoratedFactory = $factory;
}

/**
* {@inheritdoc}

*/
public function createNew(): ProductInterface
{

return $this->decoratedFactory->createNew();
}

/**
* {@inheritdoc}

*/
public function createWithVariant(): ProductInterface
{

return $this->decoratedFactory->createWithVariant();
}

/**
* @return ProductInterface

*/
public function createDisabled(): ProductInterface
{

(continues on next page)

2.1. The Customization Guide 105

Sylius

(continued from previous page)

/** @var ProductInterface $product */
$product = $this->decoratedFactory->createWithVariant();

$product->setEnabled(false);

return $product;
}

}

2. In order to decorate the base ProductFactory with your implementation you need to configure it as a decorating
service in the app/Resources/config/services.yml.

services:
app.factory.product:

class: AppBundle\Factory\ProductFactory
decorates: sylius.factory.product
arguments: ['@app.factory.product.inner']
public: false

3. You can use the new method of the factory in routing.

After the sylius.factory.product has been decorated it has got the new createDisabled() method.
To actually use it overwrite sylius_admin_product_create_simple route like below in app/config/
routing/admin/product.yml:

app/config/routing/admin/product.yml
sylius_admin_product_create_simple:

path: /products/new/simple
methods: [GET, POST]
defaults:

_controller: sylius.controller.product:createAction
_sylius:

section: admin
factory:

method: createDisabled # like here for example
template: SyliusAdminBundle:Crud:create.html.twig
redirect: sylius_admin_product_update
vars:

subheader: sylius.ui.manage_your_product_catalog
templates:

form: SyliusAdminBundle:Product:_form.html.twig
route:

name: sylius_admin_product_create_simple

Create a new yaml file located at app/config/routing/admin.yml, if it does not exist yet.

app/config/routing/admin.yml
app_admin_product:

resource: 'admin/product.yml'

Remember to import the app/config/routing/admin.yml into the app/config/routing.yml.

app/config/routing.yml
app_admin:

resource: 'routing/admin.yml'
prefix: /admin

106 Chapter 2. The Customization Guide

Sylius

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

Learn more

• SyliusResourceBundle creating resources

2.1.5 Customizing Controllers

All Sylius resources use the Sylius/Bundle/ResourceBundle/Controller/ResourceController by default, but some of
them have already been extended in Bundles. If you want to override a controller action, check which controller you
should be extending.

Note: There are two types of controllers we can define in Sylius:

Resource Controllers - are based only on one Entity, so they return only the resources they have in their name. For
instance a ProductController should return only products.

Standard Controllers - non-resource; these may use many entities at once, they are useful on more general pages.
We are defining these controllers only if the actions we want cannot be done through yaml configuration - like sending
emails.

Why would you customize a Controller?

To add your custom actions you need to override controllers. You may need to:

• add a generic action that will render a list of recommended products with a product on its show page.

• render a partial template that cannot be done via yaml resource action.

How to customize a Resource Controller?

Imagine that you would want to render a list of best selling products in a partial template that will be reusable anywhere.
Assuming that you already have a method on the ProductRepository - you can see such an example here. Having
this method you may be rendering its result in a new action of the ProductController using a partial template.

See example below:

1. Create a new Controller class under the AppBundle/Controller namespace.

Remember that it has to extend a proper base class. How can you check that?

For the ProductController run:

$ php bin/console debug:container sylius.controller.product

As a result you will get the Sylius\Bundle\ResourceBundle\Controller\ResourceController -
this is the class that you need to extend.

Now you have to create the controller that will have a generic action that is basically the showAction from the
ResourceController extended by getting a list of recommended products from your external api.

2.1. The Customization Guide 107

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ResourceBundle/Controller/ResourceController.php

Sylius

<?php

namespace AppBundle\Controller;

use FOS\RestBundle\View\View;
use Sylius\Bundle\ResourceBundle\Controller\ResourceController;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
use Sylius\Component\Resource\ResourceActions;

class ProductController extends ResourceController
{

/**
* @param Request $request

*
* @return Response

*/
public function showAction(Request $request): Response
{

$configuration = $this->requestConfigurationFactory->create($this->metadata,
→˓$request);

$this->isGrantedOr403($configuration, ResourceActions::SHOW);
$product = $this->findOr404($configuration);

$recommendationServiceApi = $this->get('app.recommendation_service_api');

$recommendedProducts = $recommendationServiceApi->getRecommendedProducts(
→˓$product);

$this->eventDispatcher->dispatch(ResourceActions::SHOW, $configuration,
→˓$product);

$view = View::create($product);

if ($configuration->isHtmlRequest()) {
$view

->setTemplate($configuration->getTemplate(ResourceActions::SHOW . '.
→˓html'))

->setTemplateVar($this->metadata->getName())
->setData([

'configuration' => $configuration,
'metadata' => $this->metadata,
'resource' => $product,
'recommendedProducts' => $recommendedProducts,
$this->metadata->getName() => $product,

])
;

}

return $this->viewHandler->handle($configuration, $view);
}

}

2. In order to use your controller and its actions you need to configure it in the app/config/config.yml.

sylius_product:
(continues on next page)

108 Chapter 2. The Customization Guide

Sylius

(continued from previous page)

resources:
product:

classes:
controller: AppBundle\Controller\ProductController

How to customize a Standard Controller:

Let’s assume that you would like to add some logic to the Homepage.

1. Create a new Controller class under the AppBundle/Controller/Shop namespace.

If you still need the methods of the original HomepageController, then copy its body to the new class.

<?php

namespace AppBundle\Controller\Shop;

use Symfony\Bundle\FrameworkBundle\Templating\EngineInterface;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

final class HomepageController
{

/**
* @var EngineInterface

*/
private $templatingEngine;

/**
* @param EngineInterface $templatingEngine

*/
public function __construct(EngineInterface $templatingEngine)
{

$this->templatingEngine = $templatingEngine;
}

/**
* @param Request $request

*
* @return Response

*/
public function indexAction(Request $request): Response
{

return $this->templatingEngine->renderResponse('@SyliusShop/Homepage/index.
→˓html.twig');

}

/**
* @param Request $request

*
* @return Response

*/
public function customAction(Request $request): Response
{

// Put your custom logic here

(continues on next page)

2.1. The Customization Guide 109

Sylius

(continued from previous page)

}
}

2. The next thing you have to do is to override the sylius.controller.shop.homepage service definition in
the app/config/services.yml.

app/config/services.yml
services:

sylius.controller.shop.homepage:
class: AppBundle\Controller\Shop\HomepageController
arguments: ['@templating']

Remember to import the app/config/services.yml into the app/config/config.yml.

app/config/config.yml
imports:

- { resource: "services.yml" }

Tip: Run $ php bin/console debug:container sylius.controller.shop.homepage to check
if the class has changed to your implementation.

From now on your customAction of the HomepageControllerwill be available alongside the indexAction
from the base class.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.6 Customizing Validation

The default validation group for all resources is sylius, but you can configure your own validation.

How to customize validation?

Let’s take the example of changing the length of name for the Product entity - watch out the field name is hold on
the ProductTranslation model.

In the sylius validation group the minimum length is equal to 2. What if you’d want to have at least 10 characters?

1. Create the AppBundle/Resources/config/validation.yml.

In this file you need to overwrite the whole validation of your field that you are willing to modify.
Take this configuration from the Sylius/Bundle/ProductBundle/Resources/config/validation/
ProductTranslation.xml - you can choose format xml or yaml.

Give it a new, custom validation group - [app_product].

Sylius\Component\Product\Model\ProductTranslation:
properties:

name:
(continues on next page)

110 Chapter 2. The Customization Guide

Sylius

(continued from previous page)

- NotBlank:
message: sylius.product.name.not_blank
groups: [app_product]

- Length:
min: 10
minMessage: sylius.product.name.min_length
max: 255
maxMessage: sylius.product.name.max_length
groups: [app_product]

Tip: When using custom validation messages see here how to add them.

2. Configure the new validation group in the app/config/services.yml.

app/config/services.yml
parameters:

sylius.form.type.product_translation.validation_groups: [app_product]
sylius.form.type.product.validation_groups: [app_product] # the product class

→˓also needs to be aware of the translation'a validation

Remember to import the app/config/services.yml into the app/config/config.yml.

app/config/config.yml
imports:

- { resource: "services.yml" }

Done. Now in all forms where the Product name is being used, your new validation group will be applied, not letting
users add products with name shorter than 10 characters.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.7 Customizing Menus

Adding new positions in your menu is done via events.

You have got the Sylius\Bundle\UiBundle\Menu\Event\MenuBuilderEvent with
FactoryInterface and ItemInterface of KnpMenu, this lets you manipulate the whole menu.

You’ve got six events that you should be subscribing to:

sylius.menu.shop.account # For the menu of the MyAccount section in shop
sylius.menu.admin.main # For the Admin Panel menu
sylius.menu.admin.customer.show # For the buttons menu on top of the show page of the
→˓Customer (/admin/customers/{id})
sylius.menu.admin.order.show # For the buttons menu on top of the show page of the
→˓Order (/admin/orders/{id})
sylius.menu.admin.product.form # For the tabular menu on the left hand side of the
→˓new/edit pages of the Product (/admin/products/new & /admin/products/{id}/edit)
sylius.menu.admin.product_variant.form # For the tabular menu on the left hand side
→˓of the new/edit pages of the ProductVariant (/admin/products/{productId}/variants/
→˓new & /admin/products/{productId}/variants/{id}/edit)

(continues on next page)

2.1. The Customization Guide 111

http://symfony.com/doc/current/validation/translations.html
https://github.com/KnpLabs/KnpMenu

Sylius

(continued from previous page)

How to customize Admin Menu?

Tip: Admin Panel menu is the one in the left expandable sidebar on the /admin/ url.

1. In order to add items to the Admin menu in Sylius you have to create a
AppBundle\Menu\AdminMenuListener class.

In the example below we are adding a one new item and sub-item to the Admin panel menu.

<?php

namespace AppBundle\Menu;

use Sylius\Bundle\UiBundle\Menu\Event\MenuBuilderEvent;

final class AdminMenuListener
{

/**
* @param MenuBuilderEvent $event

*/
public function addAdminMenuItems(MenuBuilderEvent $event): void
{

$menu = $event->getMenu();

$newSubmenu = $menu
->addChild('new')
->setLabel('Custom Admin Submenu')

;

$newSubmenu
->addChild('new-subitem')
->setLabel('Custom Admin Menu Itemu')

;
}

}

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener to the
sylius.menu.admin.main event in the AppBundle/Resources/config/services.yml.

AppBundle/Resources/config/services.yml
services:

app.listener.admin.menu_builder:
class: AppBundle\Menu\AdminMenuListener
tags:

- { name: kernel.event_listener, event: sylius.menu.admin.main, method:
→˓addAdminMenuItems }

3. Result:

After these two steps your admin panel menu should look like that, the new items appear at the bottom:

112 Chapter 2. The Customization Guide

Sylius

How to customize Account Menu?

Tip: My Account panel menu is the one in the left sidebar on the /account/dashboard/ url.

1. In order to add items to the Account menu in Sylius you have to create a
AppBundle\Menu\AccountMenuListener class.

In the example below we are adding a one new item to the menu in the My Account section of shop.

<?php

namespace AppBundle\Menu;

use Sylius\Bundle\UiBundle\Menu\Event\MenuBuilderEvent;

(continues on next page)

2.1. The Customization Guide 113

Sylius

(continued from previous page)

final class AccountMenuListener
{

/**
* @param MenuBuilderEvent $event

*/
public function addAccountMenuItems(MenuBuilderEvent $event): void
{

$menu = $event->getMenu();

$menu
->addChild('new', ['route' => 'sylius_shop_account_dashboard'])
->setLabel('Custom Account Menu Item')
->setLabelAttribute('icon', 'star')

;
}

}

As you can see above the new item can be given a route, a label and an icon.

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener to the
sylius.menu.shop.account event in the AppBundle/Resources/config/services.yml.

AppBundle/Resources/config/services.yml
services:

app.listener.shop.menu_builder:
class: AppBundle\Menu\AccountMenuListener
tags:

- { name: kernel.event_listener, event: sylius.menu.shop.account, method:
→˓addAccountMenuItems }

3. Result:

After these two steps your user account menu should look like that, the new item appears at the bottom:

114 Chapter 2. The Customization Guide

Sylius

How to customize Admin Customer Show Menu?

Tip: Admin customer menu is the set of buttons in the right top corner on the /admin/customers/{id} url.

1. In order to add buttons to the Admin Customer Show menu in Sylius you have to create a
AppBundle\Menu\AdminCustomerShowMenuListener class.

Note: This menu is build from buttons. There are a few button types available: edit, show, delete, link
(default), and transition (for state machines).

Buttons (except for the link and transition types) already have a defined color, icon and la-
bel. The link and transition types buttons can be customized with the setLabel('label'),
setLabelAttribute('color', 'color') and setLabelAttribute('icon', 'icon') methods.

The delete button must have also the resource_id attribute set (for csrf token purposes).

In the example below, we are adding one new button to the Admin Customer Show Menu. It has the type set, even
though the link type is default to make the example easily customizable.

<?php

namespace AppBundle\Menu;

(continues on next page)

2.1. The Customization Guide 115

Sylius

(continued from previous page)

use Sylius\Bundle\AdminBundle\Event\CustomerShowMenuBuilderEvent;

final class AdminCustomerShowMenuListener
{

/**
* @param CustomerShowMenuBuilderEvent $event

*/
public function addAdminCustomerShowMenuItems(CustomerShowMenuBuilderEvent

→˓$event): void
{

$menu = $event->getMenu();
$customer = $event->getCustomer();

if (null !== $customer->getUser()) {
$menu

->addChild('impersonate', [
'route' => 'sylius_admin_impersonate_user',
'routeParameters' => ['username' => $customer->getUser()->

→˓getEmailCanonical()]
])
->setAttribute('type', 'link')
->setLabel('Impersonate')
->setLabelAttribute('icon', 'unhide')
->setLabelAttribute('color', 'blue')

;
}

}
}

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener to
the sylius.menu.admin.customer.show event in the AppBundle/Resources/config/services.
yml.

AppBundle/Resources/config/services.yml
services:

app.listener.admin.customer.show.menu_builder:
class: AppBundle\Menu\AdminCustomerShowMenuListener
tags:

- { name: kernel.event_listener, event: sylius.menu.admin.customer.show,
→˓method: addAdminCustomerShowMenuItems }

How to customize Admin Order Show Menu?

Tip: Admin order show menu is the set of buttons in the right top corner on the /admin/orders/{id} url.

1. In order to add buttons to the Admin Order Show menu in Sylius you have to create a
AppBundle\Menu\AdminOrderShowMenuListener class.

Note: This menu is build from buttons. There are a few button types available: edit, show, delete, link
(default), and transition (for state machines).

Buttons (except for the link and transition types) already have a defined color, icon and la-
bel. The link and transition types buttons can be customized with the setLabel('label'),

116 Chapter 2. The Customization Guide

Sylius

setLabelAttribute('color', 'color') and setLabelAttribute('icon', 'icon') methods.

The delete button must have also the resource_id attribute set (for csrf token purposes).

In the example below, we are adding one new button to the Admin Order Show Menu. It is a transition type
button, that will let the admin fulfill the order.

Warning: There is no sylius_admin_order_fulfill route in Sylius. Create this route if you need it.

<?php

namespace AppBundle\Menu;

use Sylius\Bundle\AdminBundle\Event\OrderShowMenuBuilderEvent;
use Sylius\Component\Order\OrderTransitions;

final class AdminOrderShowMenuListener
{

/**
* @param OrderShowMenuBuilderEvent $event

*/
public function addAdminOrderShowMenuItems(OrderShowMenuBuilderEvent $event): void
{

$menu = $event->getMenu();
$order = $event->getOrder();
$stateMachine = $event->getStateMachine();

if ($stateMachine->can(OrderTransitions::TRANSITION_FULFILL)) {
$menu

->addChild('fulfill', [
'route' => 'sylius_admin_order_fulfill',
'routeParameters' => ['id' => $order->getId()]

])
->setAttribute('type', 'transition')
->setLabel('Fulfill')
->setLabelAttribute('icon', 'checkmark')
->setLabelAttribute('color', 'green')

;
}

}
}

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener to the
sylius.menu.admin.order.show event in the AppBundle/Resources/config/services.yml.

AppBundle/Resources/config/services.yml
services:

app.listener.admin.order.show.menu_builder:
class: AppBundle\Menu\AdminOrderShowMenuListener
tags:

- { name: kernel.event_listener, event: sylius.menu.admin.order.show,
→˓method: addAdminOrderShowMenuItems }

How to customize Admin Product Form Menu?

2.1. The Customization Guide 117

Sylius

Tip: Admin product form menu is the set of tabs on your left hand side on the /admin/products/new and
/admin/products/{id}/edit urls.

Warning: This part of the guide assumes you already know how to customize models and forms.

1. In order to add a new tab to the Admin Product Form menu in Sylius you have to create a
AppBundle\Menu\AdminProductFormMenuListener class.

Note: This menu is build from tabs, each coupled with their own template containing the necessary part of the
form.

So lets say you want to add the product’s manufacturer details to the tabs. Provided
you have created a new template with all the required form fields and saved it etc. as
AppBundle\Resources\views\Admin\Product\Tab_manufacturer.html.twig, we will use it
in the example below.

<?php

namespace AppBundle\Menu;

use Sylius\Bundle\AdminBundle\Event\ProductMenuBuilderEvent;

final class AdminProductFormMenuListener
{

/**
* @param ProductMenuBuilderEvent $event

*/
public function addItems(ProductMenuBuilderEvent $event): void
{

$menu = $event->getMenu();

$menu
->addChild('manufacturer')
->setAttribute('template', '@App/Admin/Product/Tab/_manufacturer.html.twig

→˓')
->setLabel('Manufacturer')

;
}

}

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener to the
sylius.menu.admin.product.form event in the AppBundle/Resources/config/services.yml.

AppBundle/Resources/config/services.yml
services:

app.listener.admin.product.form.menu_builder:
class: AppBundle\Menu\AdminProductFormMenuListener
tags:

- { name: kernel.event_listener, event: sylius.menu.admin.product.form,
→˓method: addItems }

118 Chapter 2. The Customization Guide

Sylius

How to customize Admin Product Variant Form Menu?

Tip: Admin product variant form menu is the set of tabs on your left hand side on the /admin/product/
{productId}/variants/new and /admin/product/{productId}/variants/{id}/edit urls.

Warning: This part of the guide assumes you already know how to customize models and forms.

1. In order to add a new tab to the Admin Product Variant Form menu in Sylius you have to create a
AppBundle\Menu\AdminProductVariantFormMenuListener class.

Note: This menu is build from tabs, each coupled with their own template containing the necessary part of the
form.

So lets say you want to add the product variant’s media to the tabs. Provided you
have created a new template with the required form fields and saved it etc. as
AppBundle\Resources\views\Admin\ProductVariant\Tab_media.html.twig, we will use it
in the example below.

<?php

namespace AppBundle\Menu;

use Sylius\Bundle\AdminBundle\Event\ProductVariantMenuBuilderEvent;

final class AdminProductVariantFormMenuListener
{

/**
* @param ProductVariantMenuBuilderEvent $event

*/
public function addItems(ProductVariantMenuBuilderEvent $event): void
{

$menu = $event->getMenu();

$menu
->addChild('media')
->setAttribute('template', '@App/Admin/ProductVariant/Tab/_media.html.twig

→˓')
->setLabel('Media')

;
}

}

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener
to the sylius.menu.admin.product_variant.form event in the AppBundle/Resources/config/
services.yml.

AppBundle/Resources/config/services.yml
services:

app.listener.admin.product_variant.form.menu_builder:
class: AppBundle\Menu\AdminProductVariantFormMenuListener
tags:

- { name: kernel.event_listener, event: sylius.menu.admin.product_variant.
→˓form, method: addItems } (continues on next page)

2.1. The Customization Guide 119

Sylius

(continued from previous page)

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.8 Customizing Templates

Note: There are two kinds of templates in Sylius. Shop and Admin ones, plus you can create your own to satisfy
your needs.

Why would you customize a template?

The most important case for modifying the existing templates is of course integrating your own layout of the system.
Sometimes even if you have decided to stay with the default layout provided by Sylius, you need to slightly modify it
to meet your business requirements. You may just need to add your logo anywhere.

Methods of templates customizing

Warning: There are three ways of customizing templates of Sylius:

The first one is simple templates overriding inside of the app/Resources directory of your project. Using this
method you can completely change the content of templates.

The second method is templates customization via events. You are able to listen on these template events, and
by that add your own blocks without copying and pasting the whole templates. This feature is really useful when
creating Sylius Extensions.

The third method is using Sylius themes. Creating a Sylius theme requires a few more steps than basic template
overriding, but allows you to have a different design on multiple channels of the same Sylius instance. Learn more
about themes here.

How to customize templates by overriding?

Note: How do you know which template you should be overriding? Go to the page that you are going to modify, at
the bottom in the Symfony toolbar click on the route, which will redirect you to the profiler. In the Request Attributes
section under _sylius [template => ...] you can check the path to the current template.

• Shop templates: customizing Login Page template:

The default login template is: SyliusShopBundle:login.html.twig. In order to override it you need to
create your own: app/Resources/SyliusShopBundle/views/login.html.twig.

Copy the contents of the original template to make your work easier. And then modify it to your needs.

120 Chapter 2. The Customization Guide

Sylius

{% extends '@SyliusShop/layout.html.twig' %}

{% import '@SyliusUi/Macro/messages.html.twig' as messages %}

{% block content %}
<div class="ui column stackable center page grid">

{% if last_error %}
{{ messages.error(last_error.messageKey|trans(last_error.messageData,

→˓'security')) }}
{% endif %}

{# You can add a headline for instance to see if you are changing things in the
→˓correct place. #}

<h1>
This Is My Headline

</h1>

<div class="five wide column"></div>
<form class="ui six wide column form segment" action="{{ path('sylius_shop_login_

→˓check') }}" method="post" novalidate>
<div class="one field">

{{ form_row(form._username, {'value': last_username|default('')}) }}
</div>
<div class="one field">

{{ form_row(form._password) }}
</div>
<div class="one field">

<button type="submit" class="ui fluid large primary submit button">{{
→˓'sylius.ui.login_button'|trans }}</button>

</div>
</form>

</div>
{% endblock %}

Done! If you do not see any changes on the /shop/login url, clear your cache:

$ php bin/console cache:clear

• Admin templates: Customization of the Country form view.

The default template for the Country form is: SyliusAdminBundle:Country:_form.html.twig. In or-
der to override it you need to create your own: app/Resources/SyliusAdminBundle/views/Country/
_form.html.twig.

Copy the contents of the original template to make your work easier. And then modify it to your needs.

<div class="ui segment">
{{ form_errors(form) }}
{{ form_row(form.code) }}
{{ form_row(form.enabled) }}

</div>
<div class="ui segment">

{# You can add a headline for instance to see if you are changing things in the
→˓correct place. #}

<h1>My Custom Headline</h1>

<h4 class="ui dividing header">{{ 'sylius.ui.provinces'|trans }}</h4>

(continues on next page)

2.1. The Customization Guide 121

Sylius

(continued from previous page)

{{ form_row(form.provinces, {'label': false}) }}
</div>

Done! If you do not see any changes on the /admin/countries/new url, clear your cache:

$ php bin/console cache:clear

How to customize templates via events?

Sylius uses the Events mechanism provided by the SonataBlockBundle.

How to locate template events?

The events naming convention uses the routing to the place where we are adding it, but instead of _ we are us-
ing ., followed by a slot name (like sylius_admin_customer_show route results in the sylius.admin.
customer.show.slot_name events). The slot name describes where exactly in the template’s structure should
the event occur, it will be before or after certain elements.

Although when the resource name is not just one word (like product_variant) then the underscore stays in the
event prefix string. Then sylius_admin_product_variant_create route will have the sylius.admin.
product_variant.create.slot_name events.

Let’s see how the event is rendered in a default Sylius Admin template. This is the rendering of the event that occurs
on the create action of Resources, at the bottom of the page (after the content of the create form):

{# First we are setting the event_prefix based on route as it was mentioned before #}
{% set event_prefix = metadata.applicationName ~ '.admin.' ~ metadata.name ~ '.create
→˓' %}

{# And then the slot name is appended to the event_prefix #}
{{ sonata_block_render_event(event_prefix ~ '.after_content', {'resource': resource})
→˓}}

Note: Besides the events that are named based on routing, Sylius also has some other general events: those that will
appear on every Sylius admin or shop. Examples: sylius.shop.layout.slot_name or sylius.admin.
layout.slot_name. They are rendered in the layout.html.twig views for both Admin and Shop.

Tip: In order to find events in Sylius templates you can simply search for the sonata_block_render_event
phrase in your project’s directory.

How to use template events for customizations?

When you have found an event in the place where you want to add some content, here’s what you have to do.

Let’s assume that you would like to add some content after the header in the Sylius shop views. You will need to look
at the /SyliusShopBundle/Resources/views/layout.html.twig template, which is the basic layout
of Sylius shop, and then in it find the appropriate event.

For the space below the header it will be sylius.shop.layout.after_header.

122 Chapter 2. The Customization Guide

https://sonata-project.org/bundles/block/master/doc/reference/events.html

Sylius

• Create an .html.twig file that will contain what you want to add.

{# AppBundle/Resources/views/block.html.twig #}

<h1> Test Block Title </h1>

• And register a listener for the chosen event:

Warning: The name of the event should be preceded by the sonata.block.event. string.

services:
app.block_event_listener.homepage.layout.after_header:

class: Sylius\Bundle\UiBundle\Block\BlockEventListener
arguments:

- '@@App/block.html.twig'
tags:

- { name: kernel.event_listener, event: sonata.block.event.sylius.shop.
→˓layout.after_header, method: onBlockEvent }

Tip: While configuring it in yaml remember about having two @ for the argument reference to your template, just
like above '@@App/block.html.twig', what escapes the second @ and lets it not to be interpreted as a service.

In xml the double @ is not required: it would be just <argument>@App/block.html.twig</argument>

That’s it. Your new block should appear in the view.

Tip: Learn more about adding custom Admin JS & CSS in the cookbook here.

How to use themes for customizations?

You can refer to the theme documentation available here: - Themes (The book) - SyliusThemeBundle (Bundle docu-
mentation)

Global Twig variables

Each of the Twig templates in Sylius is provided with the sylius variable, that comes from the ShopperContext.

The ShopperContext is composed of ChannelContext, CurrencyContext, LocaleContext and
CustomerContext. Therefore it has access to the current channel, currency, locale and customer.

The variables available in Twig are:

Twig variable ShopperContext method name
sylius.channel getChannel()
sylius.currencyCode getCurrencyCode()
sylius.localeCode getLocaleCode()
sylius.customer getCustomer()

2.1. The Customization Guide 123

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Context/ShopperContext.php

Sylius

How to use these Twig variables?

You can check for example what is the current channel by dumping the sylius.channel variable.

{{ dump(sylius.channel) }}

That’s it, this will dump the content of the current Channel object.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.9 Customizing Translations

Note: We’ve adopted a convention of overriding translations in the app\Resources\translations directory.

Why would you customize a translation?

If you would like to change any of the translation keys defined in Sylius in any desired language.

For example:

• change “Last name” into “Surname”

• change “Add to cart” into “Buy”

There are many other places where you can customize the text content of pages.

How to customize a translation?

In order to customize a translation in your project:

1. If you don’t have it yet, create app\Resources\translations\messages.en.yml for English transla-
tions.

Note: You can create different files for different locales (languages). For example messages.pl.yml should
hold only Polish translations, as they will be visible when the current locale is PL. Check the Locales docs for more
information.

2. In this file, configure the desired key and give it a translation.

If you would like to change the translation of “Email” into “Username” on the login form you have to override its
translation key which is sylius.form.customer.email.

sylius:
form:

customer:
email: Username

124 Chapter 2. The Customization Guide

Sylius

Tip: How to check what the proper translation key is for your message: When you are on the page where you
are trying to customize a translation, click the Translations icon in the Symfony Profiler. In this section you can see
all messages with their associated keys on that page.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.10 Customizing Flashes

Why would you customize a flash?

If you would like to change any of the flash messages defined in Sylius in any desired language.

For example:

• change the content of a flash when you add resource in the admin

• change the content of a flash when you register in the shop

and many other places where you can customize the text content of the default flashes.

How to customize a flash message?

In order to customize a resource flash in your project:

1. Create the app\Resources\translations\flashes.en.yml for english contents of your flashes.

Note: You can create different files for different locales (languages). For example flashes.pl.yml should hold
only polish flashes, as they will be visible when the current locale is PL. Check Locales docs for more information.

2. In this file configure the desired flash key and give it a translation.

If you would like to change the flash message while updating a Taxon, you will need to configure the flash under the
sylius.taxon.update key:

2.1. The Customization Guide 125

Sylius

sylius:
taxon:

update: This category has been successfully edited.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.11 Customizing State Machines

Warning: Not familiar with the State Machine concept? Read the docs here!

Note: Customizing logic via State Machines vs. Events

The logic in which Sylius operates can be customized in two ways. First of them is using the state machines: what is
really useful when you need to modify business logic for instance modify the flow of the checkout, and the second is
listening on the kernel events related to the entities, which is helpful for modifying the HTTP responses visible directly
to the user, like displaying notifications, sending emails.

How to customize a State Machine?

Tip: First of all if you are attempting to change anything in any state machine in Sylius you will need a special file:
app/config/state_machine.yml which has to be imported in the app/config/config.yml.

app/config/config.yml
imports:

- { resource: "state_machine.yml" }

How to add a new state?

Let’s assume that you would like to add a new state to the Order state machine. You will need to add these few lines
to the state_machine.yml:

app/config/state_machine.yml
winzou_state_machine:

sylius_order:
states:

your_new_state: ~ # here name your state as you wish

After that your new step will be available alongside other steps that already were defined in that state machine.

126 Chapter 2. The Customization Guide

Sylius

Tip: Run $ php bin/console debug:winzou:state-machine sylius_order to check if the state
machine has changed to your implementation.

How to add a new transition?

Let’s assume that you would like to add a new transition to the Order state machine, that will allow moving from the
cancelled state backwards to new. Let’s call it “restoring”.

You will need to add these few lines to the state_machine.yml:

app/config/state_machine.yml
winzou_state_machine:

sylius_order:
transitions:

restore:
from: [cancelled]
to: new

After that your new transition will be available alongside other transitions that already were defined in that state
machine.

Tip: Run $ php bin/console debug:winzou:state-machine sylius_order to check if the state
machine has changed to your implementation.

How to remove a state and its transitions?

Warning: If you are willing to remove a state or a transition you have to override the whole states/transitions
section of the state machine you are willing to modify. See how we do it in the customization of the Checkout
process.

How to add a new callback?

Let’s assume that you would like to add a new callback to the Order state machine, that will do something on an
already defined transition.

You will need to add these few lines to the state_machine.yml:

app/config/state_machine.yml
winzou_state_machine:

sylius_order:
callbacks:

after:
sylius_send_email:

here you are choosing the transition on which the action should
→˓take place - we are using the one we have created before

on: ["cancel"]
it is just an example, use an existent service and its method

→˓here!

(continues on next page)

2.1. The Customization Guide 127

Sylius

(continued from previous page)

do: ["@service", "sendEmail"]
this will be the object of an Order here
args: ["object"]

After that your new callback will be available alongside other callbacks that already were defined in that state machine
and will be called on the desired transition

How to modify a callback?

If you would like to modify an existent callback of for example the state machine of ProductReviews, so that it does
not count the average rating but does something else - you need to add these few lines to the state_machine.yml:

app/config/state_machine.yml
winzou_state_machine:

sylius_review:
callbacks:

after:
update_price:

on: "accept"
here you can change the service and its method that is called

→˓for your own service
do: ["@sylius.review.updater.your_service", update]
args: ["object"]

How to disable a callback?

If you would like to turn off a callback of a state machine you need to set its disabled option to true. On the
example of the state machine of ProductReview, we can turn off the update_price callback:

app/config/state_machine.yml
winzou_state_machine:

sylius_review:
callbacks:

after:
update_price:

disabled: true

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

Learn more

• Winzou StateMachine Bundle

• State Machine Concept

128 Chapter 2. The Customization Guide

https://github.com/winzou/StateMachineBundle

Sylius

2.1.12 Customizing Grids

Note: We assume that you are familiar with grids. If not check the documentation of the Grid Bundle and Grid
Component first.

Why would you customize grids?

When you would like to change how the index view of an entity looks like in the administration panel, then you have
to override its grid.

• remove a field from a grid

• change a field of a grid

• reorder fields

• override an entire grid

How to customize grids?

Tip: One way to change anything in any grid in Sylius is to create a special file in the app/config/ directory:
app/config/grids.yml which has to be imported in the app/config/config.yml.

app/config/config.yml
imports:

- { resource: "grids.yml" }

How to customize fields of a grid?

How to remove a field from a grid?

If you would like to remove a field from an existing Sylius grid, you will need to disable it in the app/config/
grids.yml.

Let’s imagine that we would like to hide the title of product review field on the
sylius_admin_product_review grid.

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product_review:

fields:
title:

enabled: false

That’s all. Now the title field will be disabled (invisible).

2.1. The Customization Guide 129

Sylius

How to modify a field of a grid?

If you would like to modify for instance a label of any field from a grid, that’s what you need to do:

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product_review:

fields:
date:

label: "When was it added?"

How to customize filters of a grid?

How to remove a filter from a grid?

If you would like to remove a filter from an existing Sylius grid, you will need to disable it in the app/config/
grids.yml.

Let’s imagine that we would like to hide the titles filter of product reviews on the
sylius_admin_product_review grid.

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product_review:

filters:
title:

enabled: false

That’s all. Now the title filter will be disabled.

How to customize actions of a grid?

How to remove an action from a grid?

If you would like to disable some actions in any grid, you just need to set its enabled option to false like below:

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product_review:

actions:
item:

delete:
type: delete
enabled: false

How to modify an action of a grid?

If you would like to change the link to which an action button is redirecting, this is what you have to do:

130 Chapter 2. The Customization Guide

Sylius

Warning: The show button does not exist in the sylius_admin_product grid by default. It is assumed that
you already have it customized, and your grid has the show action.

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product:

actions:
item:

show:
type: show
label: Show in the shop
options:

link:
route: sylius_shop_product_show
parameters:

slug: resource.slug

The above grid modification will change the redirect of the show action to redirect to the shop, instead of admin show.
Also the label was changed here.

How to modify positions of fields, filters and actions in a grid?

For fields, filters and actions it is possible to easily change the order in which they are displayed in the grid.

See an example of fields order modification on the sylius_admin_product_review grid below:

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product_review:

fields:
date:

position: 5
title:

position: 6
rating:

position: 3
status:

position: 1
reviewSubject:

position: 2
author:

position: 4

Customizing grids by events

There is also another way to customize grids: via events. Every grid configuration dispatches an event when its
definition is being converted.

For example, sylius_admin_product grid dispatches such an event:

sylius.grid.admin_product # For the grid of products in admin

2.1. The Customization Guide 131

Sylius

To show you an example of a grid customization using events, we will remove a field from a grid using that method.
Here are the steps, that you need to take:

1. In order to remove fields from the product grid in Sylius you have to create a
AppBundle\Grid\AdminProductsGridListener class.

In the example below we are removing the images field from the sylius_admin_product grid.

<?php

namespace AppBundle\Grid;

use Sylius\Component\Grid\Event\GridDefinitionConverterEvent;

final class AdminProductsGridListener
{

/**
* @param GridDefinitionConverterEvent $event

*/
public function removeImageField(GridDefinitionConverterEvent $event)
{

$grid = $event->getGrid();

$grid->removeField('image');
}

}

2. After creating your class with a proper method for the grid customizations you need, subscribe your listener to the
sylius.grid.admin_product event in the AppBundle/Resources/config/services.yml.

AppBundle/Resources/config/services.yml
services:

app.listener.admin.products_grid:
class: AppBundle\Grid\AdminProductsGridListener
tags:

- { name: kernel.event_listener, event: sylius.grid.admin_product,
→˓method: removeImageField }

3. Result:

After these two steps your admin product grid should not have the image field.

How to override an entire grid?

Tip: This is the other way to customize grids. If you need to change more, than just slight adjustments we do
recommend to override an entire grid file in the app/Resources/ directory.

Let’s assume that you would like to modify the shipping_categories grid by removing filters and the delete
action from it.

• To achieve that you need to create the app/Resources/SyliusAdminBundle/config/grids/
shipping_category.yml file.

• Then into the created file copy the content of Sylius/Bundle/AdminBundle/Resources/config/
grids/shipping_category.yml.

• And modify it to your needs:

132 Chapter 2. The Customization Guide

Sylius

app/Resources/SyliusAdminBundle/config/grids/shipping_category.yml
sylius_grid:

grids:
sylius_admin_shipping_category:

driver:
name: doctrine/orm
options:

class: "%sylius.model.shipping_category.class%"
repository:

method: createListQueryBuilder
fields:

code:
type: string
label: sylius.ui.code

name:
type: string
label: sylius.ui.name

createdAt:
type: datetime
label: sylius.ui.creation_date
options:

format: d-m-Y H:i
updatedAt:

type: datetime
label: sylius.ui.updating_date
options:

format: d-m-Y H:i
actions:

main:
create:

type: create
item:

update:
type: update

In the above example the delete action and the filters section have been removed.

• That’s it! The grid has been modified and it will look like that:

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1. The Customization Guide 133

Sylius

Learn more

• Grid - Component Documentation

• Grid - Bundle Documentation

• Customizing Models

• Customizing Forms

• Customizing Repositories

• Customizing Factories

• Customizing Controllers

• Customizing Validation

• Customizing Menus

• Customizing Templates

• Customizing Translations

• Customizing Flashes

• Customizing State Machines

• Customizing Grids

2.1.13 Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

• Customizing Models

• Customizing Forms

• Customizing Repositories

• Customizing Factories

• Customizing Controllers

• Customizing Validation

• Customizing Menus

• Customizing Templates

• Customizing Translations

• Customizing Flashes

• Customizing State Machines

• Customizing Grids

134 Chapter 2. The Customization Guide

CHAPTER 3

Sylius Plugins

The collection of Sylius Plugins together with the guide on Plugins development. Remember that you can use all the
customization techniques in Plugins.

3.1 Sylius Plugins

Sylius as a platform has a lot of space for various customizations and extensions. It aims to provide a simple schema
for developing plugins. Anything you can imagine can be implemented and added to the Sylius framework as a plugin.

3.1.1 The official list of plugins

Tip: The official list of Sylius Plugins is available on the Sylius website here.

3.1.2 What are the plugins for?

The plugins either modify or extend Sylius default behaviour, providing useful features that are built on top of the
Sylius Core.

Exemplary features may be: Social media buttons, newsletter, wishlists, payment gateways integrations etc.

3.1.3 How to make a Sylius Plugin official?

Since Sylius is an open-source platform, there is a certain flow in order for the plugin to become officially adopted by
the community.

1. Develop the plugin using the official Plugin Development guide.

2. Remember about the tests and code quality!

135

http://sylius.com/developers/store/plugins

Sylius

3. Send it to the project maintainers. It can be via email to any member of the Sylius Core team, or the official Sylius
Slack.

4. Wait for your Plugin to be featured the list of plugins on the Sylius website.

How to create a plugin for Sylius?

Sylius plugin is nothing more but a regular Symfony bundle adding custom behaviour to the default Sylius application.

The best way to create your own plugin is to use Sylius plugin skeleton, which has built-in infrastructure for designing
and testing using Behat.

1. Create project using Composer.

$ composer create-project sylius/plugin-skeleton SyliusMyFirstPlugin

Note: The plugin can be created anywhere, not only inside a Sylius application, because it already has the test
environment inside.

2. Get familiar with basic plugin design.

The skeleton comes with simple application that greets a customer. There are feature scenarios in features direc-
tory; exemplary bundle with a controller, a template and a routing configuration in src; and the testing infrastructure
in tests.

Note: The tests/Application directory contains a sample Symfony application used to test your plugin.

3. Remove boilerplate files and rename your bundle.

In most cases you don’t want your Sylius plugin to greet the customer like it is now, so feel free to re-
move unnecessary controllers, assets and features. You will also want to change the plugin’s namespace from
Acme\SyliusExamplePlugin to a more meaningful one. Keep in mind that these changes also need to be
done in tests/Application and composer.json.

Tip: Refer to chapter 5 for the naming conventions to be used.

4. Implement your awesome features.

Looking at existing Sylius plugins like

• Sylius/ShopAPIPlugin

• bitbag-commerce/PayUPlugin

• stefandoorn/sitemap-plugin

• bitbag-commerce/CmsPlugin

136 Chapter 3. Sylius Plugins

http://sylius.com/slack
http://sylius.com/slack
http://sylius.com/developers/store/plugins
https://github.com/Sylius/PluginSkeleton
http://behat.org/en/latest/
https://github.com/Sylius/SyliusShopApiPlugin
https://github.com/bitbag-commerce/PayUPlugin
https://github.com/stefandoorn/sitemap-plugin
https://github.com/bitbag-commerce/CmsPlugin

Sylius

is a great way to start developing your own plugins.

You are strongly encouraged to use BDD with Behat, phpspec and PhpUnit to ensure your plugin’s extraordinary
quality.

Tip: For the plugins, the suggested way of modifying Sylius is using the Customization Guide. There you will find a
lot of help while trying to modify templates, state machines, controllers and many, many more.

5. Naming conventions

Besides the way you are creating plugins (based on our skeleton or on your own), there are a few naming conventions
that should be followed:

• Repository name should use dashes as separator, must have a sylius prefix and a plugin suffix, e.g.:
sylius-invoice-plugin.

• Bundle class name should start with vendor name, followed by Sylius and suffixed by Plugin (instead of
Bundle), e.g.: VendorNameSyliusInvoicePlugin.

• Bundle extension should be named similar, but suffixed by the Symfony standard Extension, e.g.:
VendorNameSyliusInvoiceExtension.

• Bundle class must use the Sylius\Bundle\CoreBundle\Application\SyliusPluginTrait
trait.

• Namespace should follow PSR-4 <http://www.php-fig.org/psr/psr-4/>. The top-level namespace should
be the vendor name. The second-level should be prefixed by Sylius and suffixed by Plugin (e.g.
VendorName\SyliusInvoicePlugin)

Note: Following the naming strategy for the bundle class & extension class prevents configuration
key collision. Following the convention mentioned above generates the default configuration key as e.g.
vendor_name_sylius_invoice_plugin.

The rules are to be applied to all bundles which will provide an integration with the whole Sylius platform (sylius/
sylius or sylius/core-bundle as dependency).

Reusable components for the whole Symfony community, which will be based just on some Sylius bundles should
follow the regular Symfony conventions.

Example

Assuming you are creating the invoicing plugin as used above, this will result in the following set-up.

1. Name your repository: vendor-name/sylius-invoice-plugin.

2. Create bundle class in src/VendorNameSyliusInvoicePlugin.php:

<?php

declare(strict_types=1);

namespace VendorName\SyliusInvoicePlugin;

use Sylius\Bundle\CoreBundle\Application\SyliusPluginTrait;

(continues on next page)

3.1. Sylius Plugins 137

https://www.agilealliance.org/glossary/bdd/
http://behat.org/en/latest/
http://www.phpspec.net/en/stable/
https://phpunit.de/

Sylius

(continued from previous page)

use Symfony\Component\HttpKernel\Bundle\Bundle;

final class VendorNameSyliusInvoicePlugin extends Bundle
{

use SyliusPluginTrait;
}

3. Create extension class in src/DependencyInjection/VendorNameSyliusInvoiceExtension.
php:

<?php

declare(strict_types=1);

namespace VendorName\SyliusInvoicePlugin\DependencyInjection;

use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Extension\Extension;
use Symfony\Component\DependencyInjection\Loader\XmlFileLoader;

final class VendorNameSyliusInvoiceExtension extends Extension
{

/**
* {@inheritdoc}

*/
public function load(array $config, ContainerBuilder $container): void
{

$config = $this->processConfiguration($this->getConfiguration([], $container),
→˓ $config);

$loader = new XmlFileLoader($container, new FileLocator(__DIR__ . '/../
→˓Resources/config'));

}
}

4. In composer.json, define the correct namespacing for the PSR-4 autoloader:

{
"autoload": {

"psr-4": {
"VendorName\\SyliusInvoicePlugin\\": "src/"

}
},
"autoload-dev": {

"psr-4": {
"Tests\\VendorName\\SyliusInvoicePlugin\\": "tests/"

}
},

}

Plugin Development Guide

Sylius plugins are one of the most powerful ways to extend Sylius functionalities. They’re not bounded by Sylius
release cycle and can be developed quicker and more effectively. They also allow sharing our (developers) work in an
open-source community, which is not possible with regular application customizations.

138 Chapter 3. Sylius Plugins

Sylius

BDD methodology says the most accurate way to explain some process is using an example. With respect to that rule,
let’s create some simple first plugin together!

Idea

The most important thing is a concept. You should be aware, that not every customization should be made as a plugin
for Sylius. If you:

• share the common logic between multiple projects

• think provided feature could be useful for the whole Sylius community and want to share it for free or sell it

then you should definitely consider the creation of a plugin. On the other hand, if:

• your feature is specific for your project

• you don’t want to share your work in the community (maybe yet)

then don’t be afraid to make a regular Sylius customization.

Tip: For needs of this tutorial, we will implement a simple plugin, making it possible to mark a product variant
available on demand.

How to start?

The first step is to create a new plugin using our PluginSkeleton.

$ composer create-project sylius/plugin-skeleton IronManSyliusProductOnDemandPlugin

Note: Remember about naming convention! Sylius plugin should start with your vendor name, followed by Sylius
prefix and with Plugin suffix at the end. Let’s say your vendor name is IronMan. Come on IronMan, let’s create
your plugin!

Naming changes

PluginSkeleton provides some default classes and configurations. However, they must have some default val-
ues and names that should be changed to reflect your plugin functionality. Basing on the vendor and plugin names
established above, these are the changes that should be made:

• In composer.json:

– sylius/plugin-skeleton -> iron-man/sylius-product-on-demand-plugin

– Acme example plugin for Sylius. -> Plugin allowing to mark product
variants as available on demand in Sylius. (or sth similar)

– Acme\\SyliusExamplePlugin\\ -> IronMan\\SyliusProductOnDemandPlugin\\ (the
same changes should be done in namespaces in src/ directory

– Tests\\Acme\\SyliusExamplePlugin\\ -> Tests\\IronMan\\SyliusProductOnDemandPlugin\\
(the same changes should be done in namespaces in tests/ directory

• AcmeSyliusExamplePlugin should be renamed to IronManSyliusProductOnDemandPlugin

3.1. Sylius Plugins 139

Sylius

• AcmeSyliusExampleExtension should be renamed to IronManSyliusProductOnDemandExtension

• In src/DependencyInjection/Configuration.php:

– acme_sylius_example_plugin -> iron_man_sylius_product_on_demand_plugin

• In tests/Application/app/AppKernel.php:

– \Acme\SyliusExamplePlugin\AcmeSyliusExamplePlugin() ->
\IronMan\SyliusProductOnDemandPlugin\SyliusProductOnDemandPlugin()

• In phpspec.yml.dist (if you want to use PHPSpec in your plugin):

– Acme\SyliusExamplePlugin -> IronMan\SyliusProductOnDemandPlugin

That’s it! All other files are just a boilerplate to show you what can be done in the Sylius plugin. They can be deleted
with no harm:

• All files from features/ directory

• src/Controller/GreetingController.php

• src/Resources/config/admin_routing.yml

• src/Resources/config/shop_routing.yml

• src/Resources/public/greeting.js

• src/Resources/views/dynamic_greeting.html.twig

• src/Resources/views/static_greeting.html.twig

• All files from tests/Behat/Page/Shop/ (with corresponding services)

• tests/Context/Ui/Shop/WelcomeContext.php (with corresponding service)

You should also delete Behat suite named greeting_customer from tests/Behat/Resources/suites.
yml.

Important: You don’t have to remove all these files mentioned above. They can be adapted to suit your plugin
functionality. However, as they provide default, dummy features only for the presentation reasons, it’s just easier to
delete them and implement new ones on your own.

Specification

We strongly encourage you to follow our BDD path in implementing Sylius plugins. In fact, proper tests are one of
the requirements to have your plugin officially accepted.

Attention: Even though we’re big fans of our Behat and PHPSpec-based workflow, we do not enforce you to use
the same libraries. We strongly believe that properly tested code is the biggest value, but everyone should feel well
with their own tests. If you’re not familiar with PHPSpec, but know PHPUnit (or anything else) by heart - keep
rocking with your favorite tool!

Scenario

Let’s start with describing how marking a product variant available on demand should work

140 Chapter 3. Sylius Plugins

Sylius

@managing_product_variants
Feature: Marking a variant as available on demand

In order to inform customer about possibility to order a product variant on demand
As an Administrator
I want to be able to mark product variant as available on demand

Background:
Given the store operates on a single channel in "United States"
And the store has a "Iron Man Suite" configurable product
And the product "Iron Man Suite" has a "Mark XLVI" variant priced at "$400000"
And I am logged in as an administrator

@ui
Scenario: Marking product variant as available on demand

When I want to modify the "Mark XLVI" product variant
And I mark it as available on demand
And I save my changes
Then I should be notified that it has been successfully edited
And this variant should be available on demand

What is really important, usually you don’t need to implement the whole Behat scenario on your own! In the example
above only 2 steps would need a custom implementation. Rest of them can be easily reused from Sylius Behat suite.

Important: If you’re not familiar with our BDD workflow with Behat, take a look at our BDD guide. All Behat
configurations (contexts, pages, services, suites etc.) are explained there in details.

Behavior implementation

<?php

declare(strict_types=1);

namespace Tests\IronMan\SyliusProductOnDemandPlugin\Behat\Context\Ui\Admin;

use Behat\Behat\Context\Context;
use IronMan\SyliusProductOnDemandPlugin\Entity\ProductVariantInterface;
use
→˓Tests\IronMan\SyliusProductOnDemandPlugin\Behat\Page\Ui\Admin\ProductVariantUpdatePageInterface;
→˓

use Webmozart\Assert\Assert;

final class ManagingProductVariantsContext implements Context
{

/** @var ProductVariantUpdatePageInterface */
private $productVariantUpdatePage;

public function __construct(ProductVariantUpdatePageInterface
→˓$productVariantUpdatePage)

{
$this->productVariantUpdatePage = $productVariantUpdatePage;

}

/**
* @When I mark it as available on demand

(continues on next page)

3.1. Sylius Plugins 141

Sylius

(continued from previous page)

*/
public function markVariantAsAvailableOnDemand(): void
{

$this->productVariantUpdatePage->markAsAvailableOnDemand();
}

/**
* @Then /^(this variant) should be available on demand$/

*/
public function thisVariantShouldBeAvailableOnDemand(ProductVariantInterface

→˓$productVariant): void
{

$this->productVariantUpdatePage->open([
'id' => $productVariant->getId(),
'productId' => $productVariant->getProduct()->getId(),

]);

Assert::true($this->productVariantUpdatePage->isAvailableOnDemand());
}

}

First step is done - we have a failing test, that that is going to go green when we implement a desired functionality.

Implementation

The goal of our plugin is simple - we need to extend the ProductVariant entity and provide a new flag, that could
be set on the product variant form. Following customizations are done just like in the Sylius Customization Guide,
take a look at customizing models, form and template.

Attention: PluginSkeleton is focused on delivering the most friendly and testable environment. That’s why
in tests/Application directory, there is a tiny Sylius application placed, with your plugin already used.
Thanks to that, you can test your plugin with Behat scenarios within Sylius application without installing it to
any test app manually! There is, however, one important consequence of such an architecture. Everything that
should be done by a plugin user (configuration import, templates copying etc.) should also be done in tests/
Application to simulate the real developer behavior - and therefore make your new features testable.

Model

The only field we need to add is an additional $availableOnDemand boolean. We should start with the unit tests
(written with PHPSpec, PHPUnit, or any other unit testing tool):

<?php

// spec/Entity/ProductVariantSpec.php

declare(strict_types=1);

namespace spec\IronMan\SyliusProductOnDemandPlugin\Entity;

use IronMan\SyliusProductOnDemandPlugin\Entity\ProductVariantInterface;
use PhpSpec\ObjectBehavior;

(continues on next page)

142 Chapter 3. Sylius Plugins

Sylius

(continued from previous page)

use Sylius\Component\Core\Model\ProductVariant;

final class ProductVariantSpec extends ObjectBehavior
{

function it_is_sylius_product_variant(): void
{

$this->shouldHaveType(ProductVariant::class);
}

function it_implements_product_variant_interface(): void
{

$this->shouldImplement(ProductVariantInterface::class);
}

function it_can_be_available_on_demand(): void
{

$this->isAvailableOnDemand()->shouldReturn(false);

$this->setAvailableOnDemand(true);
$this->isAvailableOnDemand()->shouldReturn(true);

}
}

<?php

// src/Entity/ProductVariant.php

declare(strict_types=1);

namespace IronMan\SyliusProductOnDemandPlugin\Entity;

use Sylius\Component\Core\Model\ProductVariant as BaseProductVariant;

class ProductVariant extends BaseProductVariant implements ProductVariantInterface
{

/** @var bool */
private $availableOnDemand = false;

public function setAvailableOnDemand(bool $availableOnDemand): void
{

$this->availableOnDemand = $availableOnDemand;
}

public function isAvailableOnDemand(): bool
{

return $this->availableOnDemand;
}

}

<?php

// src/Entity/ProductVariantInterface.php

declare(strict_types=1);

namespace IronMan\SyliusProductOnDemandPlugin\Entity;

(continues on next page)

3.1. Sylius Plugins 143

Sylius

(continued from previous page)

use Sylius\Component\Core\Model\ProductVariantInterface as
→˓BaseProductVariantInterface;

interface ProductVariant extends BaseProductVariantInterface
{

public function setAvailableOnDemand(bool $availableOnDemand): void;

public function isAvailableOnDemand(): bool;
}

Of course you need to remember about entity mapping customization as well:

src/Resources/config/doctrine/ProductVariant.orm.yml

IronMan\SyliusProductOnDemandPlugin\Entity\ProductVariant:
type: entity
table: sylius_product_variant
fields:

availableOnDemand:
type: boolean

Then our new entity should be configured as a resource model:

src/Resources/config/config.yml

sylius_product:
resources:

product_variant:
classes:

model: IronMan\SyliusProductOnDemandPlugin\Entity\ProductVariant

This configuration should be placed in src/Resources/config/config.yml. It also has to
be imported (- { resource: "@IronManSyliusProductOnDemandPlugin/Resources/config/
config.yml" }) in tests/Application/app/config/config.yml to make it work in Behat tests. And
at the end importing this file should be one of the steps described in plugin installation.

Warning: Remember that if you modify or add some mapping, you should either provide a migration for the
plugin user (that could be copied to their migration folder) or mention the requirement of migration generation in
the installation instructions!

Form

To make our new field available in Admin panel, a form extension is required:

<?php

// src/Form/Extension/ProductVariantTypeExtension.php

declare(strict_types=1);

namespace IronMan\SyliusProductOnDemandPlugin\Form\Extension;

(continues on next page)

144 Chapter 3. Sylius Plugins

Sylius

(continued from previous page)

use Symfony\Component\Form\AbstractTypeExtension;
use Symfony\Component\Form\Extension\Core\Type\CheckboxType;
use Sylius\Bundle\ProductBundle\Form\Type\ProductVariantType;
use Symfony\Component\Form\FormBuilderInterface;

final class ProductVariantTypeExtension extends AbstractTypeExtension
{

public function buildForm(FormBuilderInterface $builder, array $options): void
{

$builder->add('availableOnDemand', CheckboxType::class, [
'label' => 'iron_man_sylius_product_on_demand_plugin.ui.available_on_

→˓demand',
]);

}

public function getExtendedType(): string
{

return ProductVariantType::class;
}

}

Translation keys placed in src/Resources/translations/message.{locale}.yml will be resolved au-
tomatically.

src/Resources/translations/message.en.yml

iron_man_sylius_product_on_demand_plugin:
ui:

available_on_demand: Available on demand

And in your services.yml file:

src/Resources/config/services.yml

services:
iron_man_sylius_product_on_demand_plugin.form.extension.type.product_variant:

class:
→˓IronMan\SyliusProductOnDemandPlugin\Form\Extension\ProductVariantTypeExtension

tags:
- { name: form.type_extension, extended_type:

→˓Sylius\Bundle\ProductBundle\Form\Type\ProductVariantType }

Again, you must remember about importing src/Resources/config/services.yml in tests/
Application/app/Resources/config/config.yml.

Template

The last step is extending the template of a product variant form. It can be done in three ways:

• by overwriting template

• by using sonata block events

• by writing a theme

For the needs of this tutorial, we will go the first way. What’s crucial, we need to determine which template should
be overwritten. Naming for twig files in Sylius, both in ShopBundle and AdminBundle are pretty clear and straight-

3.1. Sylius Plugins 145

Sylius

forward. In this specific case, the template to override is src/Sylius/Bundle/AdminBundle/Resources/
views/ProductVariant/Tab/_details.html.twig. It should be copied to src/Resources/views/
SyliusAdminBundle/ProductVariant/Tab/ directory, and additional field should be placed somewhere in
the template.

{# src/Resources/views/SyliusAdminBundle/ProductVariant/Tab/_details.html.twig #}

{#...#}

<div class="ui segment">
<h4 class="ui dividing header">{{ 'sylius.ui.inventory'|trans }}</h4>
{{ form_row(form.onHand) }}
{{ form_row(form.tracked) }}
{{ form_row(form.version) }}
{{ form_row(form.availableOnDemand) }}

</div>

{#...#}

Warning: Beware! Implementing a new template on the plugin level is not everything! You must remember
that this template should be copied to app/Resources/views/SyliusAdminBundle/views/ directory
(with whole catalogs structure, means /ProductVariant/Tab in the application that uses your plugin - and
therefore it should be mentioned in installation instruction. The same thing should be done for your test appli-
cation (you should have tests/Application/views/SyliusAdminBundle/ catalog with this template
copied).

Take a look at customizing the templates section in the documentation, for a better understanding of this topic.

Summary

Congratulations! You’ve created your first, fully tested and documented, customization to Sylius inside a Sylius
plugin!

As a result, you should see a new field in product variant form:

As you can see, there are some things to do at the beginning of development, but now, when you are already familiar
with the whole structure, each next feature can be provided faster than the previous ones.

What’s next?

Of course, it’s only the beginning. You could think about plenty of new features associated with this new product
variant field. What could be the next step?

146 Chapter 3. Sylius Plugins

Sylius

• customizing a product variant grid, to see new field on the index page

• customizing template of product details page, to show information to customer if product is not available, but
can be ordered on demand

• allowing to order not available yet, but available on demand variants and therefore customizing the whole
order processing and inventory operations

and even more. The limit is only your imagination (and business value, of course!). For more inspiration, we strongly
recommend our customizing guide.

At the end, do not hesitate to contact us at contact@sylius.com when you manage to implement a new plugin. We
would be happy to check it out and add it to our official plugins list!

Note: Beware, that to have your plugin officially accepted, it needs to be created with respect to clean-code principles
and properly tested!

Future

We are working hard to make creating Sylius plugins even more developer- and user-friendly. Be in touch with the
PluginSkeleton notifications and other announcements from Sylius community. Our plugins base is growing fast - why
not be a part of it?

• How to create a plugin for Sylius?

• Plugin Development Guide

• How to create a plugin for Sylius?

• Plugin Development Guide

3.1. Sylius Plugins 147

mailto:contact@sylius.com
https://sylius.com/plugins/
https://github.com/Sylius/PluginSkeleton

Sylius

148 Chapter 3. Sylius Plugins

CHAPTER 4

The Cookbook

The Cookbook is a collection of specific solutions for specific needs.

4.1 The Cookbook

The Sylius Cookbook is a collection of solution articles helping you with some specific, narrow problems.

4.1.1 Entities

How to add a custom model?

In some cases you may be needing to add new models to your application in order to cover unique business needs.
The process of extending Sylius with new entities is simple and intuitive.

As an example we will take a Supplier entity, which may be really useful for shop maintenance.

1. Define your needs

A Supplier needs three essential fields: name, description and enabled flag.

2. Generate the entity

Symfony, the framework Sylius uses, provides the SensioGeneratorBundle, that simplifies the process of adding a
model.

Warning: Remember to have the SensioGeneratorBundle imported in the AppKernel, as it is not there by
default.

149

http://symfony.com/doc/current/bundles/SensioGeneratorBundle/index.html

Sylius

You need to use such a command in your project directory.

$ php bin/console generate:doctrine:entity

The generator will ask you for the entity name and fields. See how it should look like to match our assumptions.

150 Chapter 4. The Cookbook

Sylius

4.1. The Cookbook 151

Sylius

3. Update the database using migrations

Assuming that your database was up-to-date before adding the new entity, run:

$ php bin/console doctrine:migrations:diff

This will generate a new migration file which adds the Supplier entity to your database. Then update the database
using the generated migration:

$ php bin/console doctrine:migrations:migrate

4. Add ResourceInterface to your model class

Go to the generated class file and make it implement the ResourceInterface:

<?php

namespace AppBundle\Entity;

use Sylius\Component\Resource\Model\ResourceInterface;

class Supplier implements ResourceInterface
{

// ...
}

5. Register your entity as a Sylius resource

If you don’t have it yet create a file app/config/resources.yml, import it in the app/config/config.
yml.

app/config/config.yml
imports:

- { resource: "resources.yml" }

And add these few lines in the resources.yml file:

app/config/resources.yml
sylius_resource:

resources:
app.supplier:

driver: doctrine/orm # You can use also different driver here
classes:

model: AppBundle\Entity\Supplier

To check if the process was run correctly run such a command:

$ php bin/console debug:container | grep supplier

The output should be:

152 Chapter 4. The Cookbook

Sylius

6. Optionally try to use Sylius API to create new resource

See how to work with API in the separate cookbook here.

Note: Using API is not mandatory. It is just a nice moment for you to try it out. If you are not interested go to the
next point of this cookbook.

7. Define grid structure for the new entity

To have templates for your Entity administration out of the box you can use Grids. Here you can see how to configure
a grid for the Supplier entity.

app/config/grids/admin/supplier.yml
sylius_grid:

grids:
app_admin_supplier:

driver:
name: doctrine/orm
options:

class: AppBundle\Entity\Supplier
fields:

name:
type: string
label: sylius.ui.name

description:
type: string
label: sylius.ui.description

enabled:
type: twig
label: sylius.ui.enabled
options:

template: "@SyliusUi/Grid/Field/enabled.html.twig"
actions:

main:
create:

type: create
item:

update:
type: update

delete:
type: delete

Remember to import your grid in the app/config/grids/grids.yml file which has to be imported in the
app/config/config.yml.

app/config/grids/grids.yml
imports:

- { resource: 'admin/supplier.yml' }

app/config/config.yml
imports:

- { resource: "grids/grids.yml" }

4.1. The Cookbook 153

Sylius

8. Define routing for entity administration

Having a grid prepared we can configure routing for the entity administration:

Create the app/config/routing/admin/supplier.yml file. Include it in the app/config/routing/
admin.yml, which should be also included in the app/config/routing.yml.

app/config/routing/admin/supplier.yml
app_admin_supplier:

resource: |
alias: app.supplier
section: admin
templates: SyliusAdminBundle:Crud
redirect: update
grid: app_admin_supplier
vars:

all:
subheader: app.ui.supplier

index:
icon: 'file image outline'

type: sylius.resource

app/config/routing/admin.yml
app_admin_supplier:

resource: 'admin/supplier.yml'

app/config/routing.yml
app_admin:

resource: 'routing/admin.yml'
prefix: /admin

9. Add entity administration to the admin menu

Tip: See how to add links to your new entity administration in the administration menu.

9. Check the admin panel for your changes

Tip: To see what you can do with your new entity access the http://localhost:8000/admin/suppliers/
url.

Learn more

• GridBundle documentation

• ResourceBundle documentation

• Customization Guide

154 Chapter 4. The Cookbook

Sylius

How to add a custom translatable model?

In this guide we will create a new translatable model in our system, which is quite similar to adding a simple model,
although it requires some additional steps.

As an example we will take a translatable Supplier entity, which may be really useful for shop maintenance.

1. Define your needs

A Supplier needs three essential fields: name, description and enabled flag. The name and description fields
need to be translatable.

2. Generate the SupplierTranslation entity

Symfony, the framework Sylius uses, provides the SensioGeneratorBundle, that simplifies the process of adding a
model.

Warning: Remember to have the SensioGeneratorBundle imported in the AppKernel, as it is not there by
default.

You need to use such a command in your project directory.

$ php bin/console generate:doctrine:entity

The generator will ask you for the entity name and fields. See how it should look like to match our assumptions.

4.1. The Cookbook 155

http://symfony.com/doc/current/bundles/SensioGeneratorBundle/index.html

Sylius

As you can see we have provided only the desired translatable fields.

Below the final SupplierTranslation class is presented, it implements the ResourceInterface.

<?php

namespace AppBundle\Entity;

use Sylius\Component\Resource\Model\AbstractTranslation;

(continues on next page)

156 Chapter 4. The Cookbook

Sylius

(continued from previous page)

use Sylius\Component\Resource\Model\ResourceInterface;

class SupplierTranslation extends AbstractTranslation implements ResourceInterface
{

/**
* @var int

*/
private $id;

/**
* @var string

*/
private $name;

/**
* @var string

*/
private $description;

/**
* @return int

*/
public function getId()
{

return $this->id;
}

/**
* @param string $name

*/
public function setName($name)
{

$this->name = $name;
}

/**
* @return string

*/
public function getName()
{

return $this->name;
}

/**
* @param string $description

*/
public function setDescription($description)
{

$this->description = $description;
}

/**
* @return string

*/
public function getDescription()
{

return $this->description;
(continues on next page)

4.1. The Cookbook 157

Sylius

(continued from previous page)

}
}

3. Generate the Supplier entity

While generating the entity, similarly to the way the translation was generated, we are providing only non-translatable
fields. In our case only the enabled field.

158 Chapter 4. The Cookbook

Sylius

Having the stubs generated, we need to extend our class with a connection to SupplierTranslation.

• implement the ResourceInterface,

• implement the TranslatableInterface,

• use the TranslatableTrait,

• initialize the translations collection in the constructor,

• add the createTranslation() method,

• implement getters and setters for the properties that are held on the translation model.

As a result you should get such a Supplier class:

<?php

namespace AppBundle\Entity;

use Sylius\Component\Resource\Model\ResourceInterface;
use Sylius\Component\Resource\Model\TranslatableInterface;
use Sylius\Component\Resource\Model\TranslatableTrait;

class Supplier implements ResourceInterface, TranslatableInterface
{

use TranslatableTrait {
__construct as private initializeTranslationsCollection;

}

public function __construct()
{

$this->initializeTranslationsCollection();
}

/**
* @var int

*/
private $id;

/**
* @var bool

*/
private $enabled;

/**
* @return int

*/
public function getId()
{

return $this->id;
}

/**
* @param string $name

*/
public function setName($name)
{

$this->getTranslation()->setName($name);
}

(continues on next page)

4.1. The Cookbook 159

Sylius

(continued from previous page)

/**
* @return string

*/
public function getName()
{

return $this->getTranslation()->getName();
}

/**
* @param string $description

*/
public function setDescription($description)
{

$this->getTranslation()->setDescription($description);
}

/**
* @return string

*/
public function getDescription()
{

return $this->getTranslation()->getDescription();
}

/**
* @param boolean $enabled

*/
public function setEnabled($enabled)
{

$this->enabled = $enabled;
}

/**
* @return bool

*/
public function getEnabled()
{

return $this->enabled;
}

/**
* {@inheritdoc}

*/
protected function createTranslation()
{

return new SupplierTranslation();
}

}

4. Update the database using migrations

Assuming that your database was up-to-date before adding the new entity, run:

$ php bin/console doctrine:migrations:diff

This will generate a new migration file which adds the Supplier entity to your database. Then update the database

160 Chapter 4. The Cookbook

Sylius

using the generated migration:

$ php bin/console doctrine:migrations:migrate

5. Register your entity together with translation as a Sylius resource

If you don’t have it yet create a file app/config/resources.yml, import it in the app/config/config.
yml.

app/config/config.yml
imports:

- { resource: "resources.yml" }

And add these few lines in the resources.yml file:

app/config/resources.yml
sylius_resource:

resources:
app.supplier:

driver: doctrine/orm # You can use also different driver here
classes:

model: AppBundle\Entity\Supplier
translation:

classes:
model: AppBundle\Entity\SupplierTranslation

To check if the process was run correctly run such a command:

$ php bin/console debug:container | grep supplier

The output should be:

6. Prepare new forms for your entity, that will be aware of its translation

You will need both SupplierType and SupplierTranslationType.

Let’s start with the translation type, as it will be included into the entity type.

<?php

namespace AppBundle\Form\Type;

use Sylius\Bundle\ResourceBundle\Form\Type\AbstractResourceType;
use Symfony\Component\Form\Extension\Core\Type\TextareaType;
use Symfony\Component\Form\Extension\Core\Type\TextType;
use Symfony\Component\Form\FormBuilderInterface;

class SupplierTranslationType extends AbstractResourceType

(continues on next page)

4.1. The Cookbook 161

Sylius

(continued from previous page)

{
/**
* {@inheritdoc}

*/
public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('name', TextType::class)
->add('description', TextareaType::class, [

'required' => false,
])

;
}

/**
* {@inheritdoc}

*/
public function getBlockPrefix()
{

return 'app_supplier_translation';
}

}

On the SupplierTranslationType we need to define only the translatable fields.

Then let’s prepare the entity type, that will include the translation type.

<?php

namespace AppBundle\Form\Type;

use Sylius\Bundle\ResourceBundle\Form\Type\AbstractResourceType;
use Sylius\Bundle\ResourceBundle\Form\Type\ResourceTranslationsType;
use Sylius\Component\Resource\Translation\Provider\TranslationLocaleProviderInterface;
use Symfony\Component\Form\Extension\Core\Type\CheckboxType;
use Symfony\Component\Form\Extension\Core\Type\TextareaType;
use Symfony\Component\Form\Extension\Core\Type\TextType;
use Symfony\Component\Form\FormBuilderInterface;

class SupplierType extends AbstractResourceType
{

/**
* {@inheritdoc}

*/
public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('translations', ResourceTranslationsType::class, [

'entry_type' => SupplierTranslationType::class,
])
->add('enabled', CheckboxType::class, [

'required' => false,
])

;
}

/**
(continues on next page)

162 Chapter 4. The Cookbook

Sylius

(continued from previous page)

* {@inheritdoc}

*/
public function getBlockPrefix()
{

return 'app_supplier';
}

}

7. Register the new forms as services

Before the newly created forms will be ready to use them, they need to be registered as services:

AppBundle/Resources/config/services.yml
services:

app.supplier.form.type:
class: AppBundle\Form\Type\SupplierType
tags:

- { name: form.type }
arguments: ['%app.model.supplier.class%', ['sylius']]

app.supplier_translation.form.type:
class: AppBundle\Form\Type\SupplierTranslationType
tags:

- { name: form.type }
arguments: ['%app.model.supplier_translation.class%', ['sylius']]

8. Register the forms as resource forms of the Supplier entity

Extend the resource configuration of the app.supplier with forms:

app/config/resources.yml
sylius_resource:

resources:
app.supplier:

driver: doctrine/orm # You can use also different driver here
classes:

model: AppBundle\Entity\Supplier
form: AppBundle\Form\Type\SupplierType

translation:
classes:

model: AppBundle\Entity\SupplierTranslation
form: AppBundle\Form\Type\SupplierTranslationType

9. Define grid structure for the new entity

To have templates for your Entity administration out of the box you can use Grids. Here you can see how to configure
a grid for the Supplier entity.

app/config/grids/admin/supplier.yml
sylius_grid:

grids:
app_admin_supplier:

(continues on next page)

4.1. The Cookbook 163

Sylius

(continued from previous page)

driver:
name: doctrine/orm
options:

class: AppBundle\Entity\Supplier
fields:

name:
type: string
label: sylius.ui.name
sortable: translation.name

enabled:
type: twig
label: sylius.ui.enabled
options:

template: "@SyliusUi/Grid/Field/enabled.html.twig"
actions:

main:
create:

type: create
item:

update:
type: update

delete:
type: delete

Remember to import your grid in the app/config/grids/grids.yml file which has to be imported in the
app/config/config.yml.

app/config/grids/grids.yml
imports:

- { resource: 'admin/supplier.yml' }

app/config/config.yml
imports:

- { resource: "grids/grids.yml" }

10. Create template

AppBundle/Resources/views/Supplier/_form.yml
{% from '@SyliusAdmin/Macro/translationForm.html.twig' import translationForm %}

{{ form_errors(form) }}
{{ translationForm(form.translations) }}
{{ form_row(form.enabled) }}

11. Define routing for entity administration

Having a grid prepared we can configure routing for the entity administration:

Create the app/config/routing/admin/supplier.yml file. Include it in the app/config/routing/
admin/admin.yml, which should be also included in the app/config/routing.yml.

164 Chapter 4. The Cookbook

Sylius

app/config/routing/admin/supplier.yml
app_admin_supplier:

resource: |
alias: app.supplier
section: admin
templates: SyliusAdminBundle:Crud
redirect: update
grid: app_admin_supplier
vars:

all:
subheader: app.ui.supplier
templates:

form: AppBundle:Supplier:_form.html.twig
index:

icon: 'file image outline'
type: sylius.resource

app/config/routing/admin.yml
app_admin_supplier:

resource: 'admin/supplier.yml'

app/config/routing.yml
app_admin:

resource: 'routing/admin.yml'
prefix: /admin

12. Add entity administration to the admin menu

Tip: See how to add links to your new entity administration in the administration menu.

13. Check the admin panel for your changes

Tip: To see what you can do with your new entity access the http://localhost:8000/admin/suppliers/
url.

Learn more

• GridBundle documentation

• ResourceBundle documentation

• Customization Guide

• How to add a custom model?

• How to add a custom translatable model?

4.1. The Cookbook 165

Sylius

4.1.2 Api

How to use Sylius API?

In some cases you may be needing to manipulate the resources of your application via its API. This guide aims to
introduce you to the world of Sylius API. For more sophisticated examples and cases follow the API Guide.

Authentication

Creating OAuth client:

$ php bin/console sylius:oauth-server:create-client --grant-type="password" --grant-
→˓type="refresh_token" --grant-type="token"

It will give you such a response:

A new client with public id XYZ, secret ABC has been added

Run your application on a built-in server:

$ php bin/console server:start localhost:8000

Tip:

Some test fixtures are provided with a default Sylius fixture suite(which can be obtain by executing: $ php bin/console sylius:fixtures:load). By default Sylius will provide following data:

• Sample user: api@example.com

• Sample password: sylius-api

• Sample random client: demo_client

• Sample client secret: demo_client

• Sample access token: SampleToken

To obtain authorization token for the default user run:

$ curl http://localhost:8000/api/oauth/v2/token -d "client_id"=XYZ -d "client_secret
→˓"=ABC -d "grant_type"=password -d "username"=api@example.com -d "password"=sylius-
→˓api

This will give you such a response:

{"access_token":"DEF","expires_in":3600,"token_type":"bearer","scope":null,"refresh_
→˓token":"GHI"}

Creating a new resource instance via API

Use the access_token in the request that will create a new Supplier (that we were creating in another cookbook).

$ curl -i -X POST -H "Content-Type: application/json" -H "Authorization: Bearer DEF" -
→˓d '{"name": "Example", "description": "Lorem ipsum", "enabled": true}' http://
→˓localhost:8000/api/suppliers/

166 Chapter 4. The Cookbook

mailto:api@example.com

Sylius

Tip: Read more about authorizing in API here.

Viewing a single resource instance via API

If you would like to show details of a resource use this command with object’s id as {id). Remember to use the
authorization token.

Assuming that you have created a supplier in the previous step, it will have id = 1.

$ curl -i -H "Authorization: Bearer DEF" http://localhost:8000/api/suppliers/{id}

Viewing an index of resource via API

If you would like to see a list of all instances of your resource use such a command (provide the authorization token!):

$ curl -i -H "Authorization: Bearer DEF" http://localhost:8000/api/suppliers/

Updating a single resource instance via API

If you would like to modify the whole existing resource use such a command (with a valid authorization token of
course):

$ curl -i -X PUT -H "Content-Type: application/json" -H "Authorization: Bearer DEF" -
→˓d '{"name": "Modified Name", "description": "Modified description", "enabled":
→˓false}' http://localhost:8000/api/suppliers/1

Partially updating a single resource instance via API

If you would like to update just one field of a resource use the PATCH method with such a command:

$ curl -i -X PATCH -H "Content-Type: application/json" -H "Authorization: Bearer DEF"
→˓-d '{"enabled": true}' http://localhost:8000/api/suppliers/1

Deleting a single resource instance via API

To delete a resource instance you need to call such a command (with an authorization token):

$ curl -i -X DELETE -H "Authorization: Bearer DEF" http://localhost:8000/artists/1

Learn more

• API Guide

• ResourceBundle documentation

• Customization Guide

4.1. The Cookbook 167

Sylius

• The Lionframe docs

• How to use Sylius API?

4.1.3 Shop

How to customize Sylius Checkout?

Why would you override the Checkout process?

This is a common problem for many Sylius users. Sometimes the checkout process we have designed is not suitable
for your custom business needs. Therefore you need to learn how to modify it, when you will need to for example:

• remove shipping step - when you do not ship the products you sell,

• change the order of checkout steps,

• merge shipping and addressing step into one common step,

• or even make the whole checkout a one page process.

See how to do these things below:

How to remove a step from checkout?

Let’s imagine that you are trying to create a shop that does not need shipping - it sells downloadable files only.

To meet your needs you will need to adjust checkout process. What do you have to do then? See below:

Overwrite the state machine of Checkout

Open the CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml and place its content in the
app/Resources/SyliusCoreBundle/config/app/state_machine/sylius_order_checkout.
yml which is a standard procedure of overriding configs in Symfony. Remove the shipping_selected
and shipping_skipped states, select_shipping and skip_shipping transitions. Remove the
select_shipping and skip_shipping transition from the sylius_process_cart callback.

app/Resources/SyliusCoreBundle/config/app/state_machine/sylius_order_checkout.yml
winzou_state_machine:

sylius_order_checkout:
class: "%sylius.model.order.class%"
property_path: checkoutState
graph: sylius_order_checkout
state_machine_class: "%sylius.state_machine.class%"
states:

cart: ~
addressed: ~
payment_skipped: ~
payment_selected: ~
completed: ~

transitions:
address:

from: [cart, addressed, payment_selected, payment_skipped]
to: addressed

skip_payment:
(continues on next page)

168 Chapter 4. The Cookbook

http://lakion.com/lionframe
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
http://symfony.com/doc/current/bundles/inheritance.html#overriding-resources-templates-routing-etc

Sylius

(continued from previous page)

from: [addressed]
to: payment_skipped

select_payment:
from: [addressed, payment_selected]
to: payment_selected

complete:
from: [payment_selected, payment_skipped]
to: completed

callbacks:
after:

sylius_process_cart:
on: ["address", "select_payment"]
do: ["@sylius.order_processing.order_processor", "process"]
args: ["object"]

sylius_create_order:
on: ["complete"]
do: ["@sm.callback.cascade_transition", "apply"]
args: ["object", "event", "'create'", "'sylius_order'"]

sylius_save_checkout_completion_date:
on: ["complete"]
do: ["object", "completeCheckout"]
args: ["object"]

sylius_skip_shipping:
on: ["address"]
do: ["@sylius.state_resolver.order_checkout", "resolve"]
args: ["object"]
priority: 1

sylius_skip_payment:
on: ["address"]
do: ["@sylius.state_resolver.order_checkout", "resolve"]
args: ["object"]
priority: 1

Tip: To check if your new state machine configuration is overriding the old one run: $ php bin/console
debug:winzou:state-machine and check the configuration of sylius_order_checkout.

Adjust Checkout Resolver

The next step of customizing Checkout is to adjust the Checkout Resolver to match the changes you have made in the
state machine. Make these changes in the config.yml.

app/config/config.yml
sylius_shop:

checkout_resolver:
pattern: /checkout/.+
route_map:

cart:
route: sylius_shop_checkout_address

addressed:
route: sylius_shop_checkout_select_payment

payment_selected:
route: sylius_shop_checkout_complete

(continues on next page)

4.1. The Cookbook 169

Sylius

(continued from previous page)

payment_skipped:
route: sylius_shop_checkout_complete

Adjust Checkout Templates

After you have got the resolver adjusted, modify the templates for checkout. You have to remove shipping from steps
and disable the hardcoded ability to go back to the shipping step and the number of steps being displayed in the
checkout navigation. You will achieve that by overriding two files:

• ShopBundle/Resources/views/Checkout/_steps.html.twig

• ShopBundle/Resources/views/Checkout/SelectPayment/_navigation.html.twig

{# app/Resources/SyliusShopBundle/views/Checkout/_steps.html.twig #}
{% if active is not defined or active == 'address' %}

{% set steps = {'address': 'active', 'select_payment': 'disabled', 'complete':
→˓'disabled'} %}
{% elseif active == 'select_payment' %}

{% set steps = {'address': 'completed', 'select_payment': 'active', 'complete':
→˓'disabled'} %}
{% else %}

{% set steps = {'address': 'completed', 'select_payment': 'completed', 'complete
→˓': 'active'} %}
{% endif %}

{% set order_requires_payment = sylius_is_payment_required(order) %}

{% set steps_count = 'three' %}
{% if not order_requires_payment %}

{% set steps_count = 'two' %}
{% endif %}

<div class="ui {{ steps_count }} steps">
<a class="{{ steps['address'] }} step" href="{{ path('sylius_shop_checkout_address

→˓') }}">
<i class="map icon"></i>
<div class="content">

<div class="title">{{ 'sylius.ui.address'|trans }}</div>
<div class="description">{{ 'sylius.ui.fill_in_your_billing_and_shipping_

→˓addresses'|trans }}</div>
</div>

{% if order_requires_payment %}
<a class="{{ steps['select_payment'] }} step" href="{{ path('sylius_shop_checkout_

→˓select_payment') }}">
<i class="payment icon"></i>
<div class="content">

<div class="title">{{ 'sylius.ui.payment'|trans }}</div>
<div class="description">{{ 'sylius.ui.choose_how_you_will_pay'|trans }}</

→˓div>
</div>

{% endif %}
<div class="{{ steps['complete'] }} step" href="{{ path('sylius_shop_checkout_

→˓complete') }}">

(continues on next page)

170 Chapter 4. The Cookbook

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/Resources/views/Checkout/_steps.html.twig
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/Resources/views/Checkout/SelectPayment/_navigation.html.twig

Sylius

(continued from previous page)

<i class="checkered flag icon"></i>
<div class="content">

<div class="title">{{ 'sylius.ui.complete'|trans }}</div>
<div class="description">{{ 'sylius.ui.review_and_confirm_your_order

→˓'|trans }}</div>
</div>

</div>
</div>

{# app/Resources/SyliusShopBundle/views/Checkout/SelectPayment/_navigation.html.twig
→˓#}
{% set enabled = order.payments|length %}

<div class="ui two column grid">
<div class="column">

<a href="{{ path('sylius_shop_checkout_address') }}" class="ui large icon
→˓labeled button"><i class="arrow left icon"></i> {{ 'sylius.ui.change_address'|trans
→˓}}

</div>
<div class="right aligned column">

<button type="submit" id="next-step" class="ui large primary icon labeled{%
→˓if not enabled %} disabled{% endif %} button">

<i class="arrow right icon"></i>
{{ 'sylius.ui.next'|trans }}

</button>
</div>

</div>

Overwrite routing for Checkout

Unfortunately there is no better way - you have to overwrite the whole routing for Checkout.
To do that copy the content of ShopBundle/Resources/config/routing/checkout.yml to the app/
Resources/SyliusShopBundle/config/routing/checkout.yml file. Remove routing of
sylius_shop_checkout_select_shipping. The rest should remain the same.

app/Resources/SyliusShopBundle/config/routing/checkout.yml
sylius_shop_checkout_start:

path: /
methods: [GET]
defaults:

_controller: FrameworkBundle:Redirect:redirect
route: sylius_shop_checkout_address

sylius_shop_checkout_address:
path: /address
methods: [GET, PUT]
defaults:

_controller: sylius.controller.order:updateAction
_sylius:

event: address
flash: false
template: SyliusShopBundle:Checkout:address.html.twig
form:

type: Sylius\Bundle\CoreBundle\Form\Type\Checkout\AddressType

(continues on next page)

4.1. The Cookbook 171

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/Resources/config/routing/checkout.yml

Sylius

(continued from previous page)

options:
customer: expr:service('sylius.context.customer').getCustomer()

repository:
method: find
arguments:

- "expr:service('sylius.context.cart').getCart()"
state_machine:

graph: sylius_order_checkout
transition: address

sylius_shop_checkout_select_payment:
path: /select-payment
methods: [GET, PUT]
defaults:

_controller: sylius.controller.order:updateAction
_sylius:

event: payment
flash: false
template: SyliusShopBundle:Checkout:selectPayment.html.twig
form: Sylius\Bundle\CoreBundle\Form\Type\Checkout\SelectPaymentType
repository:

method: find
arguments:

- "expr:service('sylius.context.cart').getCart()"
state_machine:

graph: sylius_order_checkout
transition: select_payment

sylius_shop_checkout_complete:
path: /complete
methods: [GET, PUT]
defaults:

_controller: sylius.controller.order:updateAction
_sylius:

event: complete
flash: false
template: SyliusShopBundle:Checkout:complete.html.twig
repository:

method: find
arguments:

- "expr:service('sylius.context.cart').getCart()"
state_machine:

graph: sylius_order_checkout
transition: complete

redirect:
route: sylius_shop_order_pay
parameters:

tokenValue: resource.tokenValue
form:

type: Sylius\Bundle\CoreBundle\Form\Type\Checkout\CompleteType
options:

validation_groups: 'sylius_checkout_complete'

Tip: If you do not see any changes run $ php bin/console cache:clear.

172 Chapter 4. The Cookbook

Sylius

Learn more

• Checkout - concept Documentation

• State Machine - concept Documentation

• Customization Guide

How to change a redirect after the add to cart action?

Currently Sylius by default is using route definition and sylius-add-to-cart.js script to handle redirect after successful
add to cart action.

sylius_shop_partial_cart_add_item:
path: /add-item
methods: [GET]
defaults:

_controller: sylius.controller.order_item:addAction
_sylius:

template: $template
factory:

method: createForProduct
arguments: [expr:service('sylius.repository.product').find(

→˓$productId)]
form:

type: Sylius\Bundle\CoreBundle\Form\Type\Order\AddToCartType
options:

product: expr:service('sylius.repository.product').find(
→˓$productId)

redirect:
route: sylius_shop_cart_summary
parameters: {}

$.fn.extend({
addToCart: function () {

var element = $(this);
var href = $(element).attr('action');
var redirectUrl = $(element).data('redirect');
var validationElement = $('#sylius-cart-validation-error');

$(element).api({
method: 'POST',
on: 'submit',
cache: false,
url: href,
beforeSend: function (settings) {

settings.data = $(this).serialize();

return settings;
},
onSuccess: function (response) {

validationElement.addClass('hidden');
window.location.replace(redirectUrl);

},
onFailure: function (response) {

validationElement.removeClass('hidden');
var validationMessage = '';

(continues on next page)

4.1. The Cookbook 173

Sylius

(continued from previous page)

$.each(response.errors.errors, function (key, message) {
validationMessage += message;

});
validationElement.html(validationMessage);
$(element).removeClass('loading');

},
});

}
});

If you want to have custom logic after cart add action you can use ResourceControllerEvent to set your custom
response.

Let’s assume that you would like such a feature in your system:

<?php

final class ChangeRedirectAfterAddingToCartListener
{

/**
* @var RouterInterface

*/
private $router;

/**
* @param RouterInterface $router

*/
public function __construct(RouterInterface $router)
{

$this->router = $router;
}

/**
* @param ResourceControllerEvent $event

*/
public function onSuccessfulAddToCart(ResourceControllerEvent $event)
{

if (!$event->getSubject() instanceof OrderItemInterface) {
throw new \LogicException(

sprintf('This listener operates only on order item, got "$s"', get_
→˓class($event->getSubject()))

);
}

$newUrl = $this->router->generate('your_new_route_name', []);

$event->setResponse(new RedirectResponse($newUrl));
}

}

<service id="sylius.listener.change_redirect_after_adding_to_cart" class=
→˓"Sylius\Bundle\ShopBundle\EventListener\ChangeRedirectAfterAddingToCartListener">

<argument type="service" id="router" />
<tag name="kernel.event_listener" event="sylius.order_item.post_add" method=

→˓"onSuccessfulAddToCart" />
</service>

174 Chapter 4. The Cookbook

Sylius

Next thing to do is handling it by your frontend application.

How to disable guest checkout?

Sometimes, depending on your use case, you may want to resign from the guest checkout feature provided by Sylius.

In order to require users to have an account and be logged in before they can make an order in your shop, you have to
turn on the firewalls on the /checkout urls.

To achieve that simple add this path to access_control in the security.yml file.

app/config/security.yml
security:

access_control:
- { path: "%sylius.security.shop_regex%/checkout", role: ROLE_USER }

That will do the trick. Now, when a guest user tries to click the checkout button in the cart, they will be redirected to
the login/registration page, where after they sign in/sign up they will be redirected to the checkout addressing step.

Learn more

• Sylius Checkout

How to disable localised URLs?

URLs in Sylius are localised, this means they contain the /locale prefix with the current locale. For example when
the English (United States) locale is currently chosen in the channel, the URL of homepage will look like
that localhost:8000/en_US/.

If you do not need localised URLs, this guide will help you to disable this feature.

1. Customise the application routing in the app/config/routing.yml.

Replace:

app/config/routing.yml

sylius_shop:
resource: "@SyliusShopBundle/Resources/config/routing.yml"
prefix: /{_locale}
requirements:

locale: ^[a-z]{2}(?:[A-Z]{2})?$

sylius_shop_default_locale:
path: /
methods: [GET]
defaults:

_controller: sylius.controller.shop.locale_switch:switchAction

With:

app/config/routing.yml

sylius_shop:
resource: "@SyliusShopBundle/Resources/config/routing.yml"

4.1. The Cookbook 175

Sylius

2. Customise the security settings in the app/config/security.yml.

Replace:

app/config/security.yml

parameters:
...
sylius.security.shop_regex: "^/(?!admin|api)[^/]++"

With:

app/config/security.yml

parameters:
...
sylius.security.shop_regex: "^"

3. Customise SyliusShopBundle to use storage-based locale switching by adding the following lines at the end of the
app/config/config.yml.

app/config/config.yml

sylius_shop:
locale_switcher: storage

How to render a menu of taxons (categories) in a view?

The way of rendering a menu of taxons is a supereasy reusable action, that you can adapt into any place you need.

How does it look like?

That’s a menu that you will find on the default Sylius homepage:

176 Chapter 4. The Cookbook

Sylius

How to do it?

You can render such a menu wherever you have access to a category variable in the view, but also anywhere else.

The findChildren method of TaxonRepository takes a parentCode and nullable locale.

If locale parameter is not null the method returns also taxon’s translation based on given locale.

To render a simple menu of categories in any twig template use:

{{ render(url('sylius_shop_partial_taxon_index_by_code', {'code': 'category',
→˓'template': '@SyliusShop/Taxon/_horizontalMenu.html.twig'})) }}

You can of course customize the template or enclose the menu into html to make it look better.

That’s all. Done!

Learn more

• The Customization Guide

How to embed a list of products into a view?

Let’s imagine that you would like to render a list of 5 latest products by a chosen taxon. Such an action can take
place on the category page. Here are the steps that you will need to take:

Create a new method for the product repository

To cover the usecase we have imagined we will need a new method on the product repository:
findLatestByChannelAndTaxonCode().

Tip: First learn how to customize repositories in the customization docs here.

The new repository method will take a channel object (retrieved from channel context), a taxon code and the count of
items that you want to find.

Your extending repository class should look like that:

<?php

namespace AppBundle\Repository;

use Sylius\Bundle\CoreBundle\Doctrine\ORM\ProductRepository as BaseProductRepository;
use Sylius\Component\Core\Model\ChannelInterface;

class ProductRepository extends BaseProductRepository
{

/**
* {@inheritdoc}

*/
public function findLatestByChannelAndTaxonCode(ChannelInterface $channel, $code,

→˓$count)
{

(continues on next page)

4.1. The Cookbook 177

Sylius

(continued from previous page)

return $this->createQueryBuilder('o')
->innerJoin('o.channels', 'channel')
->andWhere('o.enabled = true')
->andWhere('channel = :channel')
->innerJoin('o.productTaxons', 'productTaxons')
->addOrderBy('productTaxons.position', 'asc')
->innerJoin('productTaxons.taxon', 'taxon')
->andWhere('taxon.code = :code')
->setParameter('code', $code)
->setParameter('channel', $channel)
->setMaxResults($count)
->getQuery()
->getResult();

}
}

And should be registered in the app/config/config.yml just like that:

sylius_product:
resources:

product:
classes:

repository: AppBundle\Repository\ProductRepository

Configure routing for the action of products rendering

To be able to render a partial with the retrieved products configure routing for it in the app/config/routing.
yml:

app/config/routing.yml
app_shop_partial_product_index_latest_by_taxon_code:

path: /latest/{code}/{count} # configure a new path that has all the needed
→˓variables

methods: [GET]
defaults:

_controller: sylius.controller.product:indexAction # you make a call on the
→˓Product Controller's index action

_sylius:
template: $template
repository:

method: findLatestByChannelAndTaxonCode # here use the new repository
→˓method

arguments:
- "expr:service('sylius.context.channel').getChannel()"
- $code
- $count

Render the result of your new path in a template

Having a new path, you can call it in a twig template that has acces to a taxon. Remember that you need to have your
taxon as a variable available there. Render the list using a simple built-in template to try it out.

178 Chapter 4. The Cookbook

Sylius

{{ render(url('app_shop_partial_product_index_latest_by_taxon_code', {'code': taxon.
→˓code, 'count': 5, 'template': '@SyliusShop/Product/_horizontalList.html.twig'})) }}

Done. In the taxon view where you have rendered the new url you will see a simple list of 5 products from this taxon,
ordered by position.

Learn more

• The Customization Guide

How to add Facebook login?

For integrating social login functionalities Sylius uses the HWIOAuthBundle. Here you will find the tutorial for
integrating Facebook login into Sylius:

Set up the HWIOAuthBundle

• Add HWIOAuthBundle to your project:

$ composer require hwi/oauth-bundle

• Enable the bundle in the AppKernel.php:

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
// ...
new HWI\Bundle\OAuthBundle\HWIOAuthBundle(),

);
}

• Import the routing:

app/config/routing.yml
hwi_oauth_redirect:

resource: "@HWIOAuthBundle/Resources/config/routing/redirect.xml"
prefix: /connect

hwi_oauth_connect:
resource: "@HWIOAuthBundle/Resources/config/routing/connect.xml"
prefix: /connect

hwi_oauth_login:
resource: "@HWIOAuthBundle/Resources/config/routing/login.xml"
prefix: /login

facebook:
path: "/login/check-facebook"

4.1. The Cookbook 179

https://github.com/hwi/HWIOAuthBundle/blob/master/Resources/doc/index.md

Sylius

Configure the connection to Facebook

Note: To properly connect to Facebook you will need a Facebook developer account. Having an account create a new
app for your website. In your app dashboard you will have the client_id (App ID) and the client_secret
(App Secret), which are needed for the configuration.

app/config/config.yml
hwi_oauth:

firewall_names: [shop]
resource_owners:

facebook:
type: facebook
client_id: <client_id>
client_secret: <client_secret>
scope: "email"

Sylius uses email as the username, that’s why we choose emails as scope for this connection.

Tip: If you cannot connect to your localhost with the Facebook app, configure its settings in such a way:

• App Domain: localhost

• Click +Add Platform and choose “Website” type.

• Provide the Site URL of the platform - your local server on which you run Sylius: http://
localhost:8000

Configure the security layer

As Sylius already has a service that implements the OAuthAwareUserProviderInterface - sylius.oauth.
user_provider - we can only configure the oauth firewall. Under the security: firewalls: shop:
keys in the security.yml configure like below:

app/config/security.yml
security:

firewalls:
shop:

oauth:
resource_owners:

facebook: "/login/check-facebook"
login_path: /login
use_forward: false
failure_path: /login

oauth_user_provider:
service: sylius.oauth.user_provider

anonymous: true

Add facebook login button

You can for instance override the login template (SyliusShopBundle/Resources/views/login.html.
twig) in the app/Resources/SyliusShopBundle/views/login.html.twig and add these lines to be

180 Chapter 4. The Cookbook

http://developers.facebook.com
https://developers.facebook.com/quickstarts/?platform=web

Sylius

able to login via Facebook.

Login with Facebook

Done!

Learn more

• HWIOAuthBundle documentation

How to manage content in Sylius?

Why do you need content management system?

Content management is one of the most important business aspects of modern eCommerce apps. Providing store
updates like new blog pages, banners and promotion images is responsible for building the conversion rate either for
new and existing clients.

Content management in Sylius

Sylius standard app does not come with a content management system. Our community has taken care of it. As Sylius
does have a convenient dev oriented plugin environment, the developers from BitBag decided to develop their flexible
CMS module. You can find it here.

Tip: The whole plugin has its own demo page with specific use cases. You can access the admin panel with login:
sylius, password: sylius credentials.

Inside the plugin, you will find:

• HTML, image and text blocks you can place in each Twig template

• Page resources

• Sections which you can use to create a blog, customer information, etc.

• FAQ module

A very handy feature of this plugin is that you can customize it for your specific needs like you do with each Sylius
model.

Installation & usage

Find out more about how to install the plugin on GitHub in the README file.

Learn more

• How to create a plugin for Sylius?

• BitBag plugins

4.1. The Cookbook 181

https://github.com/hwi/HWIOAuthBundle/blob/master/Resources/doc/index.md
https://bitbag.shop
https://github.com/BitBagCommerce/SyliusCmsPlugin
https://cms.bitbag.shop/
https://cms.bitbag.shop/admin/
https://github.com/BitBagCommerce/SyliusCmsPlugin
https://github.com/BitBagCommerce

Sylius

• FriendsOfSylius plugins

• How to customize Sylius Checkout?

• How to disable guest checkout?

• How to add Facebook login?

• How to change a redirect after the add to cart action?

• How to render a menu of taxons (categories) in a view?

• How to embed a list of products into a view?

• How to disable localised URLs?

• How to manage content in Sylius?

4.1.4 Payments

How to configure PayPal Express Checkout?

One of the most frequently used payment methods in e-commerce is PayPal. Its configuration in Sylius is really
simple.

Add a payment method with the Paypal Expresss gateway in the Admin Panel

Note: To test this configuration properly you will need a developer account on Paypal.

• Create a new payment method choosing Paypal Express Checkout gateway from the gateways choice
dropdown and enable it for chosen channels.

Go to the http://localhost:8000/admin/payment-methods/new/paypal_express_checkout
url.

• Fill in the Paypal configuration form with your developer account data (username, password and
signature).

• Save the new payment method.

182 Chapter 4. The Cookbook

https://github.com/FriendsOfSylius/SyliusGoose
https://developer.paypal.com

Sylius

Choosing Paypal Express method in Checkout

From now on Paypal Express will be available in Checkout in the channel you have created it for.

Done!

Learn more

• Payments concept documentation

• Payum - Project Documentation

How to configure Stripe Credit Card payment?

One of very important payment methods in e-commerce are credit cards. Payments via credit card are in Sylius
supported by Stripe.

Install Stripe

Stripe is not available by default in Sylius, to have it you need to add its package via composer.

$ php composer require stripe/stripe-php:~4.1

Add a payment method with the Stripe gateway in the Admin Panel

Note: To test this configuration properly you will need a developer account on Stripe.

• Create a new payment method, choosing the Stripe Credit Card gateway from the gateways choice
dropdown and enable it for chosen channels.

Go to the http://localhost:8000/admin/payment-methods/new/stripe_checkout url.

• Fill in the Stripe configuration form with your developer account data (publishable_key and
secret_key).

4.1. The Cookbook 183

https://github.com/Payum/Payum/blob/master/src/Payum/Core/Resources/docs/index.md
http://stripe.com/docs
https://dashboard.stripe.com/register

Sylius

• Save the new payment method.

Tip: If your are not sure how to do it check how we do it for Paypal in this cookbook.

Warning: When your project is behind a loadbalancer and uses https you probably need to configure trusted
proxies. Otherwise the payment will not succeed and the user will endlessly loopback to the payment page without
any notice.

Choosing Stripe Credit Card method in Checkout

From now on Stripe Credit Card will be available in Checkout in the channel you have added it to.

Done!

Learn more

• Payments concept documentation

• Payum - Project Documentation

How to encrypt gateway config stored in the database?

1. Add defuse/php-encryption to your project .. code-block:

composer require defuse/php-encryption

2. Generate your Defuse Secret Key by executing the following script:

<?php

use Defuse\Crypto\Key;

require_once 'vendor/autoload.php';

var_dump(Key::createNewRandomKey()->saveToAsciiSafeString());

3. Store your generated key in a parameter in app/config/parameters.yml.

app/config/parameters.yml

parameters:
...
defuse_secret: "YOUR_GENERATED_KEY"

4. Add the following code to the application configuration in the app/config/config.yml.

app/config/config.yml

payum:
dynamic_gateways:

(continues on next page)

184 Chapter 4. The Cookbook

http://symfony.com/doc/current/deployment/proxies.html
http://symfony.com/doc/current/deployment/proxies.html
https://github.com/Payum/Payum/blob/master/src/Payum/Core/Resources/docs/index.md

Sylius

(continued from previous page)

encryption:
defuse_secret_key: "%defuse_secret%"

5. Existing gateway configs will be automatically encrypted when updated. New gateway configs will be encrypted
by default.

• How to configure PayPal Express Checkout?

• How to configure Stripe Credit Card payment?

• How to encrypt gateway config stored in the database?

4.1.5 Emails

How to send a custom e-mail?

Note: This cookbook is suitable for a clean sylius-standard installation. For more general tips, while using Sylius-
MailerBundle go to Sending configurable e-mails in Symfony Blogpost.

Currently Sylius is sending e-mails only in a few “must-have” cases - see E-mails documentation. Of course these
cases may not be sufficient for your business needs. If so, you will need to create your own custom e-mails inside the
system.

On a basic example we will now teach how to do it.

Let’s assume that you would like such a feature in your system:

Feature: Sending a notification email to the administrator when a product is out of
→˓stock

In order to be aware which products become out of stock
As an Administrator
I want to be notified via email when products become out of stock

To achieve that you will need to:

1. Create a new e-mail that will be sent:

• prepare a template for your email in the app/Resources/views/Email.

{# app/Resources/views/Email/out_of_stock.html.twig #}
{% block subject %}

One of your products has become out of stock.
{% endblock %}

{% block body %}
{% autoescape %}

The {{ variant.name }} variant is out of stock!
{% endautoescape %}

{% endblock %}

• configure the email under sylius_mailer: in the app/config/emails.yml included in app/
config/yml.

4.1. The Cookbook 185

http://sylius.com/blog/sending-configurable-e-mails-in-symfony

Sylius

app/config/emails.yml
sylius_mailer:

sender:
name: Example.com
address: no-reply@example.com

emails:
out_of_stock:

subject: "A product has become out of stock!"
template: "AppBundle:Email:out_of_stock.html.twig"

app/config/config.yml
imports:

- { resource: "emails.yml" }

2. Create an Email Manager class:

• It will need the EmailSender, the AvailabilityChecker and the AdminUser Repository.

• It will operate on the Order where it needs to check each OrderItem, get their ProductVariants and check if
they are available.

<?php

namespace AppBundle\EmailManager;

use Sylius\Component\Core\Model\OrderInterface;
use Sylius\Component\Inventory\Checker\AvailabilityCheckerInterface;
use Sylius\Component\Mailer\Sender\SenderInterface;
use Sylius\Component\Resource\Repository\RepositoryInterface;

class OutOfStockEmailManager
{

/**
* @var SenderInterface

*/
private $emailSender;

/**
* @var AvailabilityCheckerInterface $availabilityChecker

*/
private $availabilityChecker;

/**
* @var RepositoryInterface $adminUserRepository

*/
private $adminUserRepository;

/**
* @param SenderInterface $emailSender

* @param AvailabilityCheckerInterface $availabilityChecker

* @param RepositoryInterface $adminUserRepository

*/
public function __construct(

SenderInterface $emailSender,
AvailabilityCheckerInterface $availabilityChecker,

(continues on next page)

186 Chapter 4. The Cookbook

Sylius

(continued from previous page)

RepositoryInterface $adminUserRepository
) {

$this->emailSender = $emailSender;
$this->availabilityChecker = $availabilityChecker;
$this->adminUserRepository = $adminUserRepository;

}

/**
* @param OrderInterface $order

*/
public function sendOutOfStockEmail(OrderInterface $order)
{

// get all admins, but remember to put them into an array
$admins = $this->adminUserRepository->findAll()->toArray();

foreach($order->getItems() as $item) {
$variant = $item->getVariant();

$stockIsSufficient = $this->availabilityChecker->isStockSufficient(
→˓$variant, 1);

if ($stockIsSufficient) {
continue;

}
foreach($admins as $admin) {

$this->emailSender->send('out_of_stock', [$admin->getEmail()], [
→˓'variant' => $variant]);

}
}

}
}

3. Register the manager as a service:

app/config/services.yml
services:

app.email_manager.out_of_stock:
class: AppBundle\EmailManager\OutOfStockEmailManager
arguments: ['@sylius.email_sender', '@sylius.availability_checker', '@sylius.

→˓repository.admin_user']

4. Customize the state machine callback of Order’s Payment:

app/config/state_machine.yml
winzou_state_machine:

sylius_order_payment:
callbacks:

after:
app_out_of_stock_email:

on: ["pay"]
do: ["@app.email_manager.out_of_stock", "sendOutOfStockEmail"]
args: ["object"]

4.1. The Cookbook 187

Sylius

app/config/config.yml
imports:

- { resource: "state_machine.yml" }

Done!

Learn More

• Emails Concept

• State Machine Concept

• Customization Guide - State Machine

• Sending configurable e-mails in Symfony Blogpost

How to disable the order confirmation email?

In some usecases you may be wondering if it is possible to completely turn off the order confirmation email after the
order complete.

This is a complicated situation, because we need to be precise what is our expected result:

• to disable that email in the system completely,

• to send a different email on the complete action of an order instead of the order confirmation email,

Below a few ways to disable that email are presented:

Disabling the email in the configuration

There is a pretty straightforward way to disable an e-mail using just a few lines of yaml:

app/config/config.yml
sylius_mailer:

emails:
order_confirmation:

enabled: false

That’s all. With that configuration placed in your app/config/config.yml the order confirmation email will
not be sent.

Disabling the listener responsible for that action

To easily turn off the sending of the order confirmation email you will need to disable the
OrderCompleteListener service. This can be done via a CompilerPass.

<?php

namespace AppBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\Compiler\CompilerPassInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;

(continues on next page)

188 Chapter 4. The Cookbook

http://sylius.com/blog/sending-configurable-e-mails-in-symfony

Sylius

(continued from previous page)

class MailPass implements CompilerPassInterface
{

public function process(ContainerBuilder $container)
{

$container->removeDefinition('sylius.listener.order_complete');
}

}

The above compiler pass needs to be added to your bundle in the AppBundle/AppBundle.php file:

<?php

namespace AppBundle;

use AppBundle\DependencyInjection\Compiler\MailPass;
use Symfony\Component\HttpKernel\Bundle\Bundle;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class AppBundle extends Bundle
{

public function build(ContainerBuilder $container)
{

parent::build($container);

$container->addCompilerPass(new MailPass());
}

}

That’s it, we have removed the definition of the listner that is responsible for sending the order confirmation email.

Learn more

• Compiler passes in the Symfony documentation

How to configure mailer?

There are many services used for sending transactional emails in web applications. You can find for instance Mailjet,
Mandrill or SendGrid among them.

In Sylius emails are configured the Symfony way, so you can get inspired by the Symfony guides to those mailing
services.

Basically to start sending emails via a mailing service you will need to:

1. Create an account on a mailing service. 2. In the app/config/parameters.yml modify such parameters:

By default it is set to "swiftmailer", we need to have "smtp" here
mailer_transport: smtp

The mailer host may be called "SMTP Server" for some services. Copy its name from
→˓your mailing provider and paste here.
mailer_host: ...

These are Username and Password provided by the service for your account
mailer_user: ...

(continues on next page)

4.1. The Cookbook 189

http://symfony.com/doc/current/service_container/compiler_passes.html
https://www.mailjet.com
http://www.mandrill.com
https://sendgrid.com

Sylius

(continued from previous page)

mailer_password: ~

Here you provide a Mailing port suggested by your service. It can be 25, 465 or 587
This parameter is not there by default, you need to add it.
mailer_port: 25

3. **Remember not to have the disable_delivery: true parameter in the app/config/config_prod.yml for your pro-
duction environment.

Emails delivery is disable for test, dev and stage environments by default. The prod environment has delivery turned
on by default, so there is nothing to worry about if you did not change anything about it.

That’s pretty much all! All the other issues are dependent on the service you are using.

Warning: Remember that the parameters like username or password must not be commited publicly to your
repository. Save them as environment variables on your server.

Learn More

• Emails Concept

• Sending configurable e-mails in Symfony Blogpost

• How to configure mailer?

• How to send a custom e-mail?

• How to disable the order confirmation email?

4.1.6 Promotions

How to add a custom promotion rule?

Adding new, custom rules to your shop is a common usecase. You can imagine for instance, that you have some
customers in your shop that you distinguish as premium. And for these premium customers you would like to give
special promotions. For that you will need a new PromotionRule that will check if the customer is premium or not.

Create a new promotion rule

The new Rule needs a RuleChecker class:

<?php

namespace AppBundle\Promotion\Checker\Rule;

use Sylius\Component\Promotion\Checker\Rule\RuleCheckerInterface;
use Sylius\Component\Promotion\Model\PromotionSubjectInterface;

class PremiumCustomerRuleChecker implements RuleCheckerInterface
{

const TYPE = 'premium_customer';

(continues on next page)

190 Chapter 4. The Cookbook

http://sylius.com/blog/sending-configurable-e-mails-in-symfony

Sylius

(continued from previous page)

/**
* {@inheritdoc}

*/
public function isEligible(PromotionSubjectInterface $subject, array

→˓$configuration)
{

return $subject->getCustomer()->isPremium();
}

}

Prepare a configuration form type for your new rule

To be able to configure a promotion with your new rule you will need a form type for the admin panel.

Create the configuration form type class:

<?php

namespace AppBundle\Form\Type\Rule;

use Symfony\Component\Form\AbstractType;

class PremiumCustomerConfigurationType extends AbstractType
{

/**
* {@inheritdoc}

*/
public function getBlockPrefix()
{

return 'app_promotion_rule_premium_customer_configuration';
}

}

And configure it in the app/config/services.yml:

app/config/services.yml
app.form.type.promotion_rule.premium_customer_configuration:

class: AppBundle\Form\Type\Rule\PremiumCustomerConfigurationType
tags:

- { name: form.type }

Register the new rule checker as a service in the app/config/services.yml:

apps/config/services.yml
app.promotion_rule_checker.premium_customer:

class: AppBundle\Promotion\Checker\Rule\PremiumCustomerRuleChecker
tags:

- { name: sylius.promotion_rule_checker, type: premium_customer, form_type:
→˓AppBundle\Form\Type\Rule\PremiumCustomerConfigurationType, label: Premium customer }

That’s all. You will now be able to choose the new rule while creating a new promotion.

Tip: Depending on the type of rule that you would like to configure you may need to configure its form fields. See
how we do it here for example.

4.1. The Cookbook 191

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/PromotionBundle/Form/Type/Rule/ItemTotalConfigurationType.php

Sylius

Learn more

• Customization Guide

• Promotions Concept Documentation

How to add a custom promotion action?

Let’s assume that you would like to have a promotion that gives 100% discount on the cheapest item in the cart.

See what steps need to be taken to achieve that:

Create a new promotion action

You will need a new class CheapestProductDiscountPromotionActionCommand.

It will give a discount equal to the unit price of the cheapest item. That’s why it needs to have the Proportional
Distributor and the Adjustments Applicator. The execute method applies the discount and distributes it properly on
the totals. This class needs also a isConfigurationValid() method which was omitted in the snippet below.

<?php

namespace AppBundle\Promotion\Action;

use AppBundle\Promotion\Action\CheapestProductDiscountPromotionActionCommand;

class CheapestProductDiscountPromotionActionCommand extends
→˓DiscountPromotionActionCommand
{

const TYPE = 'cheapest_item_discount';

/**
* @var ProportionalIntegerDistributorInterface

*/
private $proportionalDistributor;

/**
* @var UnitsPromotionAdjustmentsApplicatorInterface

*/
private $unitsPromotionAdjustmentsApplicator;

/**
* @param ProportionalIntegerDistributorInterface $proportionalIntegerDistributor

* @param UnitsPromotionAdjustmentsApplicatorInterface
→˓$unitsPromotionAdjustmentsApplicator

*/
public function __construct(

ProportionalIntegerDistributorInterface $proportionalIntegerDistributor,
UnitsPromotionAdjustmentsApplicatorInterface

→˓$unitsPromotionAdjustmentsApplicator
) {

$this->proportionalDistributor = $proportionalIntegerDistributor;
$this->unitsPromotionAdjustmentsApplicator =

→˓$unitsPromotionAdjustmentsApplicator;
}

(continues on next page)

192 Chapter 4. The Cookbook

Sylius

(continued from previous page)

/**
* {@inheritdoc}

*/
public function execute(PromotionSubjectInterface $subject, array $configuration,

→˓PromotionInterface $promotion)
{

if (!$subject instanceof OrderInterface) {
throw new UnexpectedTypeException($subject, OrderInterface::class);

}

$items = $subject->getItems();

$cheapestItem = $items->first();

$itemsTotals = [];

foreach ($items as $item) {
$itemsTotals[] = $item->getTotal();

$cheapestItem = ($item->getVariant()->getPrice() < $cheapestItem->
→˓getVariant()->getPrice()) ? $item : $cheapestItem;

}

$splitPromotion = $this->proportionalDistributor->distribute($itemsTotals, -1
→˓* $cheapestItem->getVariant()->getPrice());

$this->unitsPromotionAdjustmentsApplicator->apply($subject, $promotion,
→˓$splitPromotion);

}

/**
* {@inheritdoc}

*/
public function getConfigurationFormType()
{

return CheapestProductDiscountPromotionActionCommand::class;
}

}

Prepare a configuration form type for the admin panel

The new action needs a form type to be available in the admin panel, while creating a new promotion.

<?php

namespace AppBundle\Form\Type\Action;

use Symfony\Component\Form\AbstractType;

class CheapestProductDiscountConfigurationType extends AbstractType
{

/**
* {@inheritdoc}

*/
public function getBlockPrefix()
{

(continues on next page)

4.1. The Cookbook 193

Sylius

(continued from previous page)

return 'app_promotion_action_cheapest_product_discount_configuration';
}

}

Register the action as a service

In the app/config/services.yml configure:

app/config/services.yml
app.promotion_action.cheapest_product_discount:

class: AppBundle\Promotion\Action\CheapestProductDiscountPromotionActionCommand
arguments: ['@sylius.proportional_integer_distributor', '@sylius.promotion.units_

→˓promotion_adjustments_applicator']
tags:

- { name: sylius.promotion_action, type: cheapest_product_discount, form_
→˓type: AppBundle\Form\Type\Action\CheapestProductDiscountConfigurationType, label:
→˓Cheapest product discount }

Register the form type as a service

In the app/config/services.yml configure:

app/config/services.yml
app.form.type.promotion_action.cheapest_product_discount_configuration:

class: AppBundle\Form\Type\Action\CheapestProductDiscountConfigurationType
tags:

- { name: form.type }

Create a new promotion with your action

Go to the admin panel of your system. On the /admin/promotions/new url you can create a new promotion.

In its configuration you can choose your new “Cheapest product discount” action.

That’s all. Done!

Learn more

• Customization Guide

• Promotions Concept Documentation

• How to add a custom promotion action?

• How to add a custom promotion rule?

4.1.7 Images

How to resize images?

In Sylius we are using the LiipImagineBundle for handling images.

194 Chapter 4. The Cookbook

http://symfony.com/doc/current/bundles/LiipImagineBundle/index.html

Sylius

Tip: You will find a reference to the types of filters in the LiipImagineBundle in their documentation.

There are three places in the Sylius platform where the configuration for images can be found:

• AdminBundle

• ShopBundle

• CoreBundle

These configs provide you with a set of filters for resizing images to thumbnails.

sylius_admin_product_tiny_thumbnail size: [64, 64]
sylius_admin_product_thumbnail size: [50, 50]
sylius_shop_product_tiny_thumbnail size: [64, 64]
sylius_shop_product_small_thumbnail size: [150, 112]
sylius_shop_product_thumbnail size: [260, 260]
sylius_shop_product_large_thumbnail size: [550, 412]
sylius_small size: [120, 90]
sylius_medium size: [240, 180]
sylius_large size: [640, 480]

How to resize images with filters?

Knowing that you have filters out of the box you need to also know how to use them with images in Twig templates.

The imagine_filter('name') is a twig filter. This is how you would get an image path for on object item
with a thumbnail applied:

Note: Sylius stores images on entities by saving a path to the file in the database. The imagine_filter root path is
/web/media/image.

How to add custom image resizing filters?

If the filters we have in Sylius by deafult are not suitable for your needs, you can easily add your own.

All you need to do is to configure new filter in the app/config/config.yml file. For example you can create a
filter for advertisement banners:

app/config/config.yml
liip_imagine:

filter_sets:
advert_banner:

filters:
thumbnail: { size: [800, 200], mode: inset }

How to use your new filter in Twig?

4.1. The Cookbook 195

http://symfony.com/doc/current/bundles/LiipImagineBundle/filters.html
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/AdminBundle/Resources/config/app/config.yml
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/Resources/config/app/config.yml
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/Resources/config/app/config.yml

Sylius

Learn more

• The LiipImagineBundle documentation

How to store images in MongoDB GridFS?

This guide will show you how to store product images in MongoDB GridFS using the DoctrineMongoDBBundle.
We’re assuming that you already enabled and configured the bundle accordingly.

Prerequisite: data structure

First of all a document class to store an image is required. To make GridFS files easily reusable, we introduce a
mapped superclass which will store the basic file information.

<?php

namespace AppBundle\Document;

use Doctrine\MongoDB\GridFSFile;

abstract class File
{

/**
* @var string

*/
protected $id;

/**
* @var GridFSFile

*/
protected $file;

/**
* @var int

*/
protected $length;

/**
* @var int

*/
protected $chunkSize;

/**
* @var \DateTime

*/
protected $uploadDate;

/**
* @var string

*/
protected $md5;

/**
* @var string

*/

(continues on next page)

196 Chapter 4. The Cookbook

http://symfony.com/doc/current/bundles/LiipImagineBundle/index.html
https://symfony.com/doc/current/bundles/DoctrineMongoDBBundle/index.html

Sylius

(continued from previous page)

protected $filename;

/**
* @var string

*/
protected $contentType;

/**
* @return string

*/
public function getId()
{

return (string) $this->id;
}

/**
* The file can either be a string if the document isn't persisted yet, or a

→˓GridFSFile

* if the document has already been persisted.

*
* @return GridFSFile|string

*/
public function getFile()
{

return $this->file;
}

/**
* @param string $file

*
* @return File

*/
public function setFile($file)
{

$this->file = $file;

if (!$this->contentType) {
$this->contentType = mime_content_type($file);

}

return $this;
}

/**
* @return int

*/
public function getLength()
{

return (int) $this->length;
}

/**
* @return int

*/
public function getChunkSize()
{

return (int) $this->chunkSize;
(continues on next page)

4.1. The Cookbook 197

Sylius

(continued from previous page)

}

/**
* @return \DateTime

*/
public function getUploadDate()
{

return $this->uploadDate;
}

/**
* @return string

*/
public function getMd5()
{

return (string) $this->md5;
}

/**
* @return string

*/
public function getFilename()
{

return (string) $this->filename;
}

/**
* @param string $filename

*
* @return File

*/
public function setFilename($filename)
{

if ($filename === '') {
$filename = null;

}

$this->filename = $filename;

return $this;
}

/**
* @return string

*/
public function getContentType()
{

return (string) $this->contentType;
}

/**
* @param string $contentType

*
* @return File

*/
public function setContentType($contentType)
{

(continues on next page)

198 Chapter 4. The Cookbook

Sylius

(continued from previous page)

if ($contentType === '') {
$contentType = null;

}

$this->contentType = $contentType;

return $this;
}

/**
* @return string

*/
public function __toString()
{

return $this->getFilename();
}

}

<!-- @AppBundle/Resources/doctrine/model/File.odm.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<doctrine-mongo-mapping xmlns="http://doctrine-project.org/schemas/odm/doctrine-mongo-
→˓mapping"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://doctrine-project.org/schemas/odm/doctrine-

→˓mongo-mapping
http://doctrine-project.org/schemas/odm/doctrine-mongo-mapping.xsd">

<mapped-superclass name="AppBundle\Document\File">
<field fieldName="id" id="true" />
<field fieldName="file" type="file" />
<field fieldName="length" type="int" />
<field fieldName="chunkSize" type="int" />
<field fieldName="uploadDate" type="date" />
<field fieldName="md5" type="string" />
<field fieldName="filename" type="string" index="true" order="asc" />
<field fieldName="contentType" type="string" />

</mapped-superclass>
</doctrine-mongo-mapping>

After creating the base File class, we’re able to create the concrete product image documents for the original
and cached images. They will be stored in the same collection, but can be differentiated by it’s type field (see
DiscriminatorField and DiscriminatorMap).

<?php

namespace AppBundle\Document\Product;

use AppBundle\Document;

class Image extends Document\File
{
}

<!-- @AppBundle/Resources/doctrine/model/ProductImage.odm.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<doctrine-mongo-mapping xmlns="http://doctrine-project.org/schemas/odm/doctrine-mongo-
→˓mapping" (continues on next page)

4.1. The Cookbook 199

Sylius

(continued from previous page)

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://doctrine-project.org/schemas/odm/

→˓doctrine-mongo-mapping
http://doctrine-project.org/schemas/odm/doctrine-mongo-mapping.xsd

→˓">

<document name="AppBundle\Document\Product\Image" collection="product_image"
→˓inheritance-type="SINGLE_COLLECTION">

<discriminator-field name="type" />
<discriminator-map>

<discriminator-mapping value="image" class=
→˓"AppBundle\Document\Product\Image" />

<discriminator-mapping value="cache" class=
→˓"AppBundle\Document\Product\Image\Cache" />

</discriminator-map>
<default-discriminator-value value="image" />

</document>
</doctrine-mongo-mapping>

Note: The image cache file stores its filter property in an embedded metadata object.

<?php

namespace AppBundle\Document\Product\Image;

use AppBundle\Document;

final class Cache extends Document\Product\Image
{

/**
* @var Cache\Metadata

*/
private $metadata;

/**
* @param string $file

* @param string $contentType

* @param string $filename

* @param string $filter

*/
public function __construct($file, $contentType, $filename, $filter)
{

$this
->setContentType($contentType)
->setFile($file)
->setFilename($filename)

;

$this->metadata = new Cache\Metadata($filter);
}

/**
* @return Cache\Metadata

*/

(continues on next page)

200 Chapter 4. The Cookbook

Sylius

(continued from previous page)

public function getMetadata()
{

return $this->metadata;
}

}

<!-- @AppBundle/Resources/doctrine/model/ProductImageCache.odm.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<doctrine-mongo-mapping xmlns="http://doctrine-project.org/schemas/odm/doctrine-mongo-
→˓mapping"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://doctrine-project.org/schemas/odm/

→˓doctrine-mongo-mapping
http://doctrine-project.org/schemas/odm/doctrine-mongo-

→˓mapping.xsd">

<document name="AppBundle\Document\Product\Image\Cache">
<embed-one field="metadata" target-document=

→˓"AppBundle\Document\Product\Image\Cache\Metadata" />
</document>

</doctrine-mongo-mapping>

<?php

namespace AppBundle\Document\Product\Image\Cache;

final class Metadata
{

/**
* @var string

*/
private $filter;

/**
* @param string $filter

*/
public function __construct($filter)
{

$this->filter = $filter;
}

/**
* @return string

*/
public function getFilter()
{

return $this->filter;
}

}

<!-- @AppBundle/Resources/doctrine/model/ProductImageCacheMetadata.odm.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<doctrine-mongo-mapping xmlns="http://doctrine-project.org/schemas/odm/doctrine-mongo-
→˓mapping"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

(continues on next page)

4.1. The Cookbook 201

Sylius

(continued from previous page)

xsi:schemaLocation="http://doctrine-project.org/schemas/odm/
→˓doctrine-mongo-mapping

http://doctrine-project.org/schemas/odm/doctrine-mongo-
→˓mapping.xsd">

<embedded-document name="AppBundle\Document\Product\Image\Cache\Metadata">
<field fieldName="filter" type="string" index="true" order="asc" />

</embedded-document>
</doctrine-mongo-mapping>

How to store images in MongoDB GridFS?

In Sylius the KnpGaufretteBundle is used to store images. In order to store images in MongoDB GridFS, we have to
create new GridFS loader services for Gaufrette:

First of all a new service is configured.

<!-- @AppBundle/Resources/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://symfony.com/schema/dic/services
http://symfony.com/schema/dic/services/services-1.0.xsd">

<services>
<service id="app.gaufrette_loader.doctrine_grid_fs" class=

→˓"Doctrine\MongoDB\GridFS" public="false">
<factory service="doctrine.odm.mongodb.document_manager" method=

→˓"getDocumentCollection" />
<argument>AppBundle\Document\Product\Image</argument>

</service>

<service id="app.gaufrette_loader.grid_fs" class="MongoGridFS">
<factory service="app.gaufrette_loader.doctrine_grid_fs" method=

→˓"getMongoCollection" />
</service>

<!-- ... -->
</services>

</container>

Now we can override the Gaufrette configuration in app/config/config.yml to use the newly created loader
service app.gaufrette_loader.grid_fs.

knp_gaufrette:
adapters:

sylius_image:
gridfs:

mongogridfs_id: app.gaufrette_loader.grid_fs

Once this configuration is changed, newly uploaded images are already stored in MongoDB GridFS.

202 Chapter 4. The Cookbook

https://github.com/KnpLabs/KnpGaufretteBundle

Sylius

How to load images from MongoDB GridFS?

Loading images from MongoDB GridFS is a bit more complicated and requires some custom classes.

First of all we have to create a new data_loader for the LiipImagineBundle.

<?php

namespace AppBundle\Imagine\Binary\Loader;

use Doctrine\ODM\MongoDB\DocumentManager;
use Liip\ImagineBundle\Binary\Loader\LoaderInterface ;
use Liip\ImagineBundle\Exception\Binary\Loader\NotLoadableException;

final class GridFSLoader implements LoaderInterface
{

/**
* @var DocumentManager

*/
protected $dm;

/**
* @var string

*/
protected $class;

/**
* @param DocumentManager $dm

* @param string $class

*/
public function __construct(DocumentManager $dm, string $class)
{

$this->dm = $dm;
$this->class = $class;

}

/**
* {@inheritdoc}

*/
public function find($filename)
{

$image = $this->dm
->getRepository($this->class)
->findOneBy(['filename' => $filename]);

if (!$image) {
throw new NotLoadableException(sprintf('Source image was not found with

→˓filename "%s"', $filename));
}

return $image->getFile()->getBytes();
}

}

Now we can create the service definition for the data loader:

<!-- @AppBundle/Resources/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>

(continues on next page)

4.1. The Cookbook 203

Sylius

(continued from previous page)

<container xmlns="http://symfony.com/schema/dic/services"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://symfony.com/schema/dic/services

http://symfony.com/schema/dic/services/services-1.0.xsd">

<services>
<service id="app.imagine_loader.grid_fs" class=

→˓"AppBundle\Imagine\Binary\Loader\GridFSLoader">
<argument type="service" id="doctrine.odm.mongodb.document_manager" />
<argument>AppBundle\Document\Product\Image</argument>
<tag name="liip_imagine.binary.loader" loader="app.imagine_loader.grid_fs

→˓" />
</service>

<!-- ... -->
</services>

</container>

The LiipImagineBundle still doesn’t know that we’re storing our images in GridFS, which is why we have to
create a custom resolver class that can find an image for a given filename and store new cached filter types of an image.

Note: The route product_cache_image is defined via an annotation on the
ImagineController::imageAction class method below this example.

<?php

namespace AppBundle\Imagine\Cache\Resolver;

use AppBundle\Document\Product\Image\Cache;
use Doctrine\ODM\MongoDB\DocumentManager;
use Doctrine\ODM\MongoDB\DocumentRepository;
use Liip\ImagineBundle\Binary\BinaryInterface;
use Liip\ImagineBundle\Imagine\Cache\Resolver\ResolverInterface;
use Symfony\Component\Routing\RouterInterface;

final class GridFSResolver implements ResolverInterface
{

/**
* @var DocumentManager

*/
private $documentManager;

/**
* @var string

*/
private $class;

/**
* @var RouterInterface

*/
private $router;

/**
* @param DocumentManager $documentManager

* @param string $class
(continues on next page)

204 Chapter 4. The Cookbook

Sylius

(continued from previous page)

* @param RouterInterface $router

*/
public function __construct(DocumentManager $documentManager, string $class,

→˓RouterInterface $router)
{

$this->documentManager = $documentManager;
$this->class = $class;
$this->router = $router;

}

/**
* {@inheritdoc}

*/
public function isStored($path, $filter)
{

return $this->findCacheFile($path, $filter) !== null;
}

/**
* {@inheritdoc}

*/
public function resolve($path, $filter)
{

$cache = $this->findCacheFile($path, $filter);

return $this->router->generate('product_cache_image', ['id' => $cache->
→˓getId()], RouterInterface::ABSOLUTE_URL);

}

/**
* {@inheritdoc}

*
* @throws GridFSException

*/
public function store(BinaryInterface $binary, $path, $filter)
{

$file = tempnam(sys_get_temp_dir(), 'GridFSResolver');

if (file_put_contents($file, $binary->getContent()) === false) {
// We're using a custom exception to make it explicit catchable
throw new GridFSException("Could not write cache file '{$file}' to disk");

}

try {
$cache = new Cache($file, $binary->getMimeType(), $path, $filter);

$this->documentManager->persist($cache);
$this->documentManager->flush();

} finally {
@unlink($file);

}
}

/**
* {@inheritdoc}

*/
public function remove(array $paths, array $filters)

(continues on next page)

4.1. The Cookbook 205

Sylius

(continued from previous page)

{
if (empty($paths) && empty($filters)) {

return;
}

$queryBuilder = $this->getRepository()->createQueryBuilder();

$queryBuilder
->remove()
->multiple()
->field('metadata.filter')
->in($filters)

;

if (!empty($paths)) {
$queryBuilder

->field('filename')
->in($paths)

;
}

$queryBuilder->getQuery()->execute();
}

/**
* @param string $path

* @param string $filter

*
* @return Cache|null

*/
private function findCacheFile($path, string $filter)
{

return $this->getRepository()->findOneBy(['filename' => $path, 'metadata.
→˓filter' => $filter]);

}

/**
* @return DocumentRepository

*/
private function getRepository()
{

return $this->documentManager->getRepository($this->class);
}

}

<?php

namespace AppBundle\Imagine\Cache\Resolver;

class GridFSException extends \RuntimeException
{
}

Create the service definition for the resolver:

<!-- @AppBundle/Resources/config/services.xml -->

(continues on next page)

206 Chapter 4. The Cookbook

Sylius

(continued from previous page)

<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://symfony.com/schema/dic/services

http://symfony.com/schema/dic/services/services-1.0.xsd">

<services>
<service id="app.imagine_resolver.grid_fs" class=

→˓"AppBundle\Imagine\Cache\Resolver\GridFSResolver">
<argument type="service" id="doctrine.odm.mongodb.document_manage" />
<argument>AppBundle\Document\Product\Image\Cache</argument>
<argument type="service" id="router" />
<tag name="liip_imagine.cache.resolver" resolver="app.imagine_resolver.

→˓grid_fs" />
</service>

<!-- ... -->
</services>

</container>

Last but not least we have to override the liip_imagine configuration in the app/config/config.yml file
to use the new data loader and resolver.

liip_imagine:
data_loader: app.imagine_loader.grid_fs
cache: app.imagine_resolver.grid_fs

Now we’re going to add a new controller action which can resolve a cached product image and it’s route.

Note: This implementation uses the Symfony Doctrine param converter.

<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://symfony.com/schema/routing

http://symfony.com/schema/routing/routing-1.0.xsd">

<route id="product_cache_image" path="/product/media/cache/{id}" />

<!-- ... -->
</routes>

<?php

namespace AppBundle\Controller;

use AppBundle\Document\Product\Image\Cache;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpFoundation\ResponseHeaderBag;

class ImagineController extends Controller

(continues on next page)

4.1. The Cookbook 207

https://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html#doctrine-converter

Sylius

(continued from previous page)

{
/**
* @param Cache $cache

* @param Request $request

*
* @return Response

*/
public function imageAction(Cache $cache, Request $request)
{

$response = new Response();
$response->setEtag($cache->getMd5());

if ($response->isNotModified($request)) {
return $response;

}

$disposition = $response->headers->
→˓makeDisposition(ResponseHeaderBag::DISPOSITION_INLINE, $cache->getId());

$response->headers->set('Content-Disposition', $disposition);
$response->headers->set('Content-Type', $cache->getContentType());

$response->setContent($cache->getFile()->getBytes());

return $response;
}

}

Learn more

• The MongoDB GridFS documentation

• The Doctrine MongoDB ODM documentation

• The DoctrineMongoDBBundle documentation

How to add images to an entity?

Extending entities with an images field is quite a popular use case. In this cookbook we will present how to add
image to the Shipping Method entity.

Instructions:

1. Extend the ShippingMethod class with the ImagesAwareInterface

In order to override the ShippingMethod that lives inside of the SyliusCoreBundle, you have to create your own
ShippingMethod class that will extend it:

<?php

declare(strict_types=1);

namespace AppBundle\Entity;

(continues on next page)

208 Chapter 4. The Cookbook

https://docs.mongodb.com/manual/core/gridfs/
http://docs.doctrine-project.org/projects/doctrine-mongodb-odm/en/latest/
https://symfony.com/doc/current/bundles/DoctrineMongoDBBundle/index.html

Sylius

(continued from previous page)

use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\Common\Collections\Collection;
use Sylius\Component\Core\Model\ImagesAwareInterface;
use Sylius\Component\Core\Model\ImageInterface;
use Sylius\Component\Core\Model\ShippingMethod as BaseShippingMethod;

class ShippingMethod extends BaseShippingMethod implements ImagesAwareInterface
{

/**
* @var Collection|ImageInterface[]

*/
protected $images;

public function __construct()
{

parent::__construct();

$this->images = new ArrayCollection();
}

/**
* {@inheritdoc}

*/
public function getImages(): Collection
{

return $this->images;
}

/**
* {@inheritdoc}

*/
public function getImagesByType(string $type): Collection
{

return $this->images->filter(function (ImageInterface $image) use ($type) {
return $type === $image->getType();

});
}

/**
* {@inheritdoc}

*/
public function hasImages(): bool
{

return !$this->images->isEmpty();
}

/**
* {@inheritdoc}

*/
public function hasImage(ImageInterface $image): bool
{

return $this->images->contains($image);
}

/**
* {@inheritdoc}

(continues on next page)

4.1. The Cookbook 209

Sylius

(continued from previous page)

*/
public function addImage(ImageInterface $image): void
{

$image->setOwner($this);
$this->images->add($image);

}

/**
* {@inheritdoc}

*/
public function removeImage(ImageInterface $image): void
{

if ($this->hasImage($image)) {
$image->setOwner(null);
$this->images->removeElement($image);

}
}

}

Tip: Read more about customizing models in the docs here.

2. Register your extended ShippingMethod as a resource’s model class

With such a configuration in the config.yml you will register your ShippingMethod class in order to override the
default one:

app/config/config.yml
sylius_shipping:

resources:
shipping_method:

classes:
model: AppBundle\Entity\ShippingMethod

3. Create the ShippingMethodImage class

In the AppBundle\Entity namespace place the ShippingMethodImage class which should look like this:

<?php

declare(strict_types=1);

namespace AppBundle\Entity;

use Sylius\Component\Core\Model\Image;

class ShippingMethodImage extends Image
{
}

210 Chapter 4. The Cookbook

Sylius

4. Add the mapping file for the ShippingMethodImage

Your new entity will be saved in the database, therefore it needs a mapping file, where you will set the
ShippingMethod as the owner of the ShippingMethodImage.

AppBundle/Resources/config/doctrine/ShippingMethodImage.orm.yml
AppBundle\Entity\ShippingMethodImage:

type: entity
table: app_shipping_method_image
manyToOne:

owner:
targetEntity: AppBundle\Entity\ShippingMethod
inversedBy: images
joinColumn:

name: owner_id
referencedColumnName: id
nullable: false
onDelete: CASCADE

5. Modify the ShippingMethod’s mapping file

The newly added images field has to be added to the mapping, with a relation to the ShippingMethodImage:

AppBundle/Resources/config/doctrine/ShippingMethod.orm.yml
AppBundle\Entity\ShippingMethod:

type: entity
table: sylius_shipping_method
oneToMany:

images:
targetEntity: AppBundle\Entity\ShippingMethodImage
mappedBy: owner
orphanRemoval: true
cascade:

- all

6. Register the ShippingMethodImage as a resource

The ShippingMethodImage class needs to be registered as a Sylius resource:

app/config/config.yml
sylius_resource:

resources:
app.shipping_method_image:

classes:
model: AppBundle\Entity\ShippingMethodImage

7. Create the ShippingMethodImageType class

This is how the class for ShippingMethodImageType should look like. Place it in the
AppBundle\Form\Type\ directory.

4.1. The Cookbook 211

Sylius

<?php

declare(strict_types=1);

namespace AppBundle\Form\Type;

use Sylius\Bundle\CoreBundle\Form\Type\ImageType;

final class ShippingMethodImageType extends ImageType
{

/**
* {@inheritdoc}

*/
public function getBlockPrefix(): string
{

return 'app_shipping_method_image';
}

}

8. Register the ShippingMethodImageType as a service

After creating the form type class, you need to register it as a form.type service like below:

services.yml
services:

app.form.type.shipping_method_image:
class: AppBundle\Form\Type\ShippingMethodImageType
tags:

- { name: form.type }
arguments: ['%app.model.shipping_method_image.class%']

9. Add the ShippingMethodImageType to the resource form configuration

What is more the new form type needs to be configured as the resource form of the ShippingMethodImage:

app/config/config.yml
sylius_resource:

resources:
app.shipping_method_image:

classes:
form: AppBundle\Form\Type\ShippingMethodImageType

10. Extend the ShippingMethodType with the images field

Tip: Read more about customizing forms via extensions in the dedicated guide.

Create the form extension class for the Sylius\Bundle\ShippingBundle\Form\Type\ShippingMethodType:

It needs to have the images field as a CollectionType.

212 Chapter 4. The Cookbook

Sylius

<?php

declare(strict_types=1);

namespace AppBundle\Form\Extension;

use AppBundle\Form\Type\ShippingMethodImageType;
use Sylius\Bundle\ShippingBundle\Form\Type\ShippingMethodType;
use Symfony\Component\Form\AbstractTypeExtension;
use Symfony\Component\Form\Extension\Core\Type\CollectionType;
use Symfony\Component\Form\FormBuilderInterface;

final class ShippingMethodTypeExtension extends AbstractTypeExtension
{

/**
* {@inheritdoc}

*/
public function buildForm(FormBuilderInterface $builder, array $options): void
{

$builder->add('images', CollectionType::class, [
'entry_type' => ShippingMethodImageType::class,
'allow_add' => true,
'allow_delete' => true,
'by_reference' => false,
'label' => 'sylius.form.shipping_method.images',

]);
}

/**
* {@inheritdoc}

*/
public function getExtendedType(): string
{

return ShippingMethodType::class;
}

}

Tip: In case you need only a single image upload, this can be done in 2 very easy steps.

First, in the code for the form provided above set allow_add and allow_delete to false

Second, in the __construct method of the ShippingMethod entity you defined earlier add the following:

public function __construct()
{

parent::__construct();
$this->images = new ArrayCollection();
$this->addImage(new ShippingMethodImage());

}

Register the form extension as a service:

services.yml
services:

app.form.extension.type.shipping_method:
class: AppBundle\Form\Extension\ShippingMethodTypeExtension

(continues on next page)

4.1. The Cookbook 213

Sylius

(continued from previous page)

tags:
- { name: form.type_extension, extended_type:

→˓Sylius\Bundle\ShippingBundle\Form\Type\ShippingMethodType }

11. Declare the ImagesUploadListener service

In order to handle the image upload you need to attach the ImagesUploadListener to the ShippingMethod
entity events:

services.yml
services:

app.listener.images_upload:
class: Sylius\Bundle\CoreBundle\EventListener\ImagesUploadListener
parent: sylius.listener.images_upload
autowire: true
autoconfigure: false
public: false
tags:

- { name: kernel.event_listener, event: sylius.shipping_method.pre_create,
→˓ method: uploadImages }

- { name: kernel.event_listener, event: sylius.shipping_method.pre_update,
→˓ method: uploadImages }

12. Render the images field in the form view

In order to achieve that you will need to customize the form view from the SyliusAdminBundle/views/
ShippingMethod/_form.html.twig file.

Copy and paste its contents into your own app/Resources/SyliusAdminBundle/views/
ShippingMethod/_form.html.twig file, and render the {{ form_row(form.images) }} field.

{# app/Resources/SyliusAdminBundle/views/ShippingMethod/_form.html.twig #}

{% from '@SyliusAdmin/Macro/translationForm.html.twig' import translationForm %}

<div class="ui two column stackable grid">
<div class="column">

<div class="ui segment">
{{ form_errors(form) }}
<div class="three fields">

{{ form_row(form.code) }}
{{ form_row(form.zone) }}
{{ form_row(form.position) }}

</div>
{{ form_row(form.enabled) }}
<h4 class="ui dividing header">{{ 'sylius.ui.availability'|trans }}</h4>
{{ form_row(form.channels) }}
<h4 class="ui dividing header">{{ 'sylius.ui.category_requirements'|trans

→˓}}</h4>
{{ form_row(form.category) }}
{% for categoryRequirementChoiceForm in form.categoryRequirement %}

{{ form_row(categoryRequirementChoiceForm) }}
{% endfor %}

(continues on next page)

214 Chapter 4. The Cookbook

Sylius

(continued from previous page)

<h4 class="ui dividing header">{{ 'sylius.ui.taxes'|trans }}</h4>
{{ form_row(form.taxCategory) }}
<h4 class="ui dividing header">{{ 'sylius.ui.shipping_charges'|trans }}</

→˓h4>
{{ form_row(form.calculator) }}
{% for name, calculatorConfigurationPrototype in form.vars.prototypes %}

<div id="{{ form.calculator.vars.id }}_{{ name }}" data-container=".
→˓configuration"

data-prototype="{{ form_
→˓widget(calculatorConfigurationPrototype)|e }}">

</div>
{% endfor %}

{# Here you go! #}
{{ form_row(form.images) }}

<div class="ui segment configuration">
{% if form.configuration is defined %}

{% for field in form.configuration %}
{{ form_row(field) }}

{% endfor %}
{% endif %}

</div>
</div>

</div>
<div class="column">

{{ translationForm(form.translations) }}
</div>

</div>

Tip: Learn more about customizing templates here.

13. Validation

Your form so far is working fine, but don’t forget about validation. The easiest way is using validation config files
under the AppBundle/Resources/config/validation folder.

This could look like this e.g.:

AppBundle\Resources\config\validation\ShippingMethodImage.yml
AppBundle\Entity\ShippingMethodImage:

properties:
file:

- Image:
groups: [sylius]
maxHeight: 1000
maxSize: 10240000
maxWidth: 1000
mimeTypes:

- "image/png"
- "image/jpg"
- "image/jpeg"
- "image/gif"

(continues on next page)

4.1. The Cookbook 215

Sylius

(continued from previous page)

mimeTypesMessage: 'This file format is not allowed. Please use PNG, JPG or
→˓GIF files.'

minHeight: 200
minWidth: 200

This defines the validation constraints for each image entity. Now connecting the validation of the ShippingMethod
to the validation of each single Image Entity is left:

AppBundle\Resources\config\validation\ShippingMethod.yml
AppBundle\Entity\ShippingMethod:
properties:
...
images:

- Valid: ~

Learn more

• GridBundle documentation

• ResourceBundle documentation

• Customization Guide

• How to resize images?

• How to store images in MongoDB GridFS?

• How to add images to an entity?

4.1.8 Deployment

How to deploy Sylius to Platform.sh?

Tip: Start with reading Platform.sh documentation. Also Symfony provides a guide on deploying projects to Plat-
form.sh.

The process of deploying Sylius to Platform.sh is based on the guidelines prepared for Symfony projects in general.
In this guide you will find sufficient instructions to have your application up and running on Platform.sh.

1. Prepare a Platform.sh project

If you do not have it yet, go to the Platform.sh store, choose development plan and go through checkout. Then, when
you will have a project ready, give it a name and proceed to Import an existing site.

Tip: To investigate if Platform.sh suits your needs, you can use their free trial, which you can choose as a develop-
ment plan.

216 Chapter 4. The Cookbook

https://docs.platform.sh/frameworks/symfony.html
http://symfony.com/doc/current/deployment/platformsh.html
http://symfony.com/doc/current/deployment/platformsh.html
https://accounts.platform.sh/platform/buy-now

Sylius

2. Make the application ready to deploy

• Add the .platform.app.yaml file at the root of your project repository

This is how this file should look like for Sylius (tuned version of the default Platform.sh example):

.platform.app.yaml
name: app

type: "php:7.1"
build:

flavor: composer

relationships:
database: "mysql:mysql"
redis: "redis:redis"

runtime:
extensions:

- msgpack
- igbinary
- memcached
- redis

dependencies:
nodejs:

yarn: "*"
gulp-cli: "*"

web:
locations:

'/':
root: "web"
passthru: "/app.php"
allow: true
expires: -1
scripts: true

'/assets/shop':
expires: 2w
passthru: true
allow: false
rules:

Only allow static files from the assets directories.
'\.(css|js|jpe?g|png|gif|svgz?|ico|bmp|tiff?

→˓|wbmp|ico|jng|bmp|html|pdf|otf|woff2|woff|eot|ttf|jar|swf|ogx|avi|wmv|asf|asx|mng|flv|webm|mov|ogv|mpe|mpe?
→˓g|mp4|3gpp|weba|ra|m4a|mp3|mp2|mpe?ga|midi?)$':

allow: true
'/media/image':

expires: 2w
passthru: true
allow: false
rules:

Only allow static files from the assets directories.
'\.(jpe?g|png|gif|svgz?)$':

allow: true
'/media/cache/resolve':

passthru: "/app.php"
expires: -1

(continues on next page)

4.1. The Cookbook 217

Sylius

(continued from previous page)

allow: true
scripts: true

'/media/cache':
expires: 2w
passthru: true
allow: false
rules:

Only allow static files from the assets directories.
'\.(jpe?g|png|gif|svgz?)$':

allow: true

disk: 4096

mounts:
"/var/cache": "shared:files/cache"
"/var/logs": "shared:files/logs"
"/web/uploads": "shared:files/uploads"
"/web/media": "shared:files/media"

hooks:
build: |

rm web/app_dev.php
rm web/app_test.php
rm web/app_test_cached.php
rm -rf var/cache/*
php bin/console --env=prod --no-debug --ansi cache:clear --no-warmup
php bin/console --env=prod --no-debug --ansi cache:warmup
php bin/console --env=prod --no-debug --ansi assets:install
Next command is only needed if you are using themes
php bin/console --env=prod --no-debug --ansi sylius:theme:assets:install
yarn install
GULP_ENV=prod yarn run gulp

deploy: |
rm -rf var/cache/*
php bin/console --env=prod doctrine:migrations:migrate --no-interaction

The above configuration includes tuned cache expiration headers for static files. The cache lifetimes can be adjusted
for your site if desired.

• Add .platform/routes.yaml file:

.platform/routes.yaml
"http://{default}/":

type: upstream
upstream: "app:http"

"http://www.{default}/":
type: redirect
to: "http://{default}/"

• Add .platform/services.yaml file:

This file will load mysql and redis on your Platform.sh server.

.platform/services.yaml
mysql:

type: mysql

(continues on next page)

218 Chapter 4. The Cookbook

Sylius

(continued from previous page)

disk: 1024

redis:
type: redis:3.0

• Configure the access to the database:

In the app/config/parameters_platform.php file, put the following code:

// app/config/parameters_platform.php
<?php

$relationships = getenv("PLATFORM_RELATIONSHIPS");

if (!$relationships) {
return;

}

$relationships = json_decode(base64_decode($relationships), true);

foreach ($relationships['database'] as $endpoint) {
if (empty($endpoint['query']['is_master'])) {

continue;
}

$container->setParameter('database_driver', 'pdo_' . $endpoint['scheme']);
$container->setParameter('database_host', $endpoint['host']);
$container->setParameter('database_port', $endpoint['port']);
$container->setParameter('database_name', $endpoint['path']);
$container->setParameter('database_user', $endpoint['username']);
$container->setParameter('database_password', $endpoint['password']);
$container->setParameter('database_path', '');

}
foreach ($relationships['redis'] as $endpoint) {

$container->setParameter('redis_dsn', 'redis://'.$endpoint['host'].':'.$endpoint[
→˓'port']);
}

$container->setParameter('sylius.cache', array('type' => 'array'));

ini_set('session.save_path', '/tmp/sessions');

if (getenv('PLATFORM_PROJECT_ENTROPY')) {
$container->setParameter('secret', getenv('PLATFORM_PROJECT_ENTROPY'));

}

Remember to have it imported in the config:

app/config/config.yml
imports:

- { resource: parameters.yml } <- Has to be placed before our new file
- { resource: parameters_platform.php }

Warning: It is important to place newly created file after importing regular parameters.yml file. Otherwise your
database connection will not work. Also this will be the file where you should set your required parameters. Its
value will be fetched from environmental variables.

4.1. The Cookbook 219

Sylius

The application secret is used in several places in Sylius and Symfony. Platform.sh allows you to deploy an environ-
ment for each branch you have, and therefore it makes sense to have a secret automatically generated by the Platform.sh
system. The last 3 lines in the sample above will use the Platform.sh-provided random value as the application secret.

3. Add Platform.sh as a remote to your repository:

Use the below command to add your Platform.sh project as the platform remote:

$ git remote add platform [PROJECT-ID]@git.[CLUSTER].platform.sh:[PROJECT-ID].git

The PROJECT-ID is the unique identifier of your project, and CLUSTER can be eu or us - depending on where are
you deploying your project.

4. Commit the Platform.sh specific files:

$ git add .platform.app.yaml
$ git add .platform/*
$ git add app/config/parameters_platform.php
$ git add app/config/config.yml
$ git commit -m "Platform.sh deploy configuration files."

5. Push your project to the platform remote:

$ git push platform master

The output of this command shows you on which URL your online store can be accessed.

6. Connect to the project via SSH and install Sylius

The SSH command can be found in your project data on Platform.sh. Alternatively use the Platform CLI tool.

When you get connected please run:

$ php bin/console sylius:install --env prod

Warning: By default platform.sh creates only one instance of a database with the main name. Platform.sh works
with the concept of an environment per branch if activated. The idea is to mimic production settings per each
branch.

7. Dive deeper

Learn some more specific topics related to Sylius & Symfony on our Advanced Platform.sh Cookbook

Learn more

• Platform.sh documentation: Configuring Symfony projects for Platform.sh

220 Chapter 4. The Cookbook

https://docs.platform.sh/gettingstarted/cli.html
https://docs.platform.sh/frameworks/symfony.html

Sylius

• Symfony documentation: Deploying Symfony to Platform.sh

• Installation Guide

Advanced Platform.sh configurations

The basic set-up let’s you easily set-up a Platform.sh project running your Sylius application. It should give you an
environment suitable for testing Platform.sh in combination with Sylius.

In this guide additional tips will be given in order to benefit in a production environment.

Keep sessions between deployments

The default configuration saves PHP sessions into /tmp/sessions. Platform.sh functions in such way that each
deployment spins up a new container instance and therefore the temporary folder holding sessions will be gone.

In order to save the PHP sessions on disk, the following steps need to be followed:

• In platform.app.yml add the following under the mount property:

mount:
"/app/sessions": "shared:files/sessions"

• In the app/config/parameters_platform.php replace the session path:

ini_set('session.save_path', '/app/app/sessions');

Alternatively you can use a php.ini` file in the root of your project:

session.save_path = "/app/app/sessions"

Use Redis for Doctrine caching:

Want to use the metacache, query cache or result cache Symfony and Doctrine have to offer? It comes with a caveat.
Platform.sh doesn’t allow you to connect to all your services yet from inside the build hook. The following tutorial
will guide you through this and make use of Redis. In the default example Redis is already activated.

• In your app/config/parameters.yml.dist add:

parameters:
metacache_driver: []
querycache_driver: []
resultcache_driver: []
redis_dsn: ~
redis_host: ~
redis_port: ~

• In the app/config/parameters_platform.php file, under the part where the database credentials are
set, add:

foreach ($relationships['redis'] as $endpoint) {
$container->setParameter('metacache_driver', 'redis');
$container->setParameter('querycache_driver', 'redis');
$container->setParameter('resultcache_driver', 'redis');

(continues on next page)

4.1. The Cookbook 221

http://symfony.com/doc/current/deployment/platformsh.html

Sylius

(continued from previous page)

$container->setParameter('redis_dsn', 'redis://'.$endpoint['host'].':'.$endpoint[
→˓'port']);

$container->setParameter('redis_host', $endpoint['host']);
$container->setParameter('redis_port', $endpoint['port']);

}

Tip: Your Redis connection credentials are now available, which you can also use for the default Symfony cache.

• In your app/config/config_prod.yml file add:

doctrine:
orm:

metadata_cache_driver:
type: "%metacache_driver%"
database: 1
host: "%redis_host%"
port: "%redis_port%"

query_cache_driver:
type: "%querycache_driver%"
database: 2
host: "%redis_host%"
port: "%redis_port%"

result_cache_driver:
type: "%resultcache_driver%"
database: 3
host: "%redis_host%"
port: "%redis_port%"

• If you want to empty the cache on deployment, adjust the deploy hook in .platform.app.yaml:

hooks:
deploy: |

rm -rf var/cache/*
php bin/console --env=prod doctrine:cache:clear-metadata
php bin/console --env=prod doctrine:cache:clear-query
php bin/console --env=prod doctrine:cache:clear-result
php bin/console --env=prod doctrine:migrations:migrate --no-interaction

Add default Sylius cronjobs:

Add the example below to your .platform.app.yaml file. This runs these cronjobs every 6 hours.

crons:
cleanup_cart:

spec: '0 */6 * * *'
cmd: '/usr/bin/flock -n /tmp/lock.app.cleanup_cart bin/console sylius:remove-

→˓expired-carts --env=prod --verbose'
cleanup_order:

spec: '0 */6 * * *'
cmd: '/usr/bin/flock -n /tmp/lock.app.cleanup_order bin/console sylius:cancel-

→˓unpaid-orders --env=prod --verbose'

222 Chapter 4. The Cookbook

Sylius

Additional tips:

• Platform.sh can serve gzipped versions of your static assets. Make sure to save your assets in the same folder, but with
a .gz suffix. The gulp-gzip node package comes very helpful integrating saving of .gz versions of your
assets.

• Platform.sh comes with a New Relic integration.

• Platform.sh comes with a Blackfire.io integration

How to deploy Sylius to Cloudways PHP Hosting?

Cloudways is a managed hosting platform for custom PHP apps and PHP frameworks such as Symfony, Laravel,
Codeigniter, Yii, CakePHP and many more. You can launch the servers on any of the five providers including Digi-
talOcean, Vultr, AWS, GCE and KYUP containers.

The deployment process of Sylius on Cloudways is pretty much straightforward and easy.

Now to install Sylius you need to go through series of few steps:

1. Launch Server with Custom PHP App

You should signup at Cloudways to buy the PHP servers from the above mentioned providers. Simply go to the
pricing page and choose your required plan. You then need to go through the verification process. Once it done login
to platform and launch your first Custom PHP application. You can follow the Gif too.

Now let’s start the process of installing Sylius on Cloudways.

2. Install the latest version of Sylius via SSH

Open the SSH terminal from the Server Management tab. You can also use PuTTY for this purpose. Find the SSH
credentials under the Master Credentials heading and login to the SSH terminal:

4.1. The Cookbook 223

https://docs.platform.sh/administration/integrations/new-relic.html
https://docs.platform.sh/administration/integrations/blackfire.html
https://platform.cloudways.com/signup

Sylius

After the login, move to the application folder using the cd command and run the following command to start installing
Sylius:

$ composer create-project sylius/sylius-standard myshop

The command will start installing the long list of dependencies for Sylius. Once the installation finishes, Sylius will
ask for the database credentials. You can find the database username and password in the Application Access Details.

Enter the database details in the SSH terminal:

Keep the rest of the values to default so that the config file will have the defaults Sylius settings. If the need arises,
you can obviously change these settings later.

224 Chapter 4. The Cookbook

Sylius

3. Install Node Dependencies

Sylius requires several Node packages, which also needs to be installed and updated before setting up the shop. In
addition, I also need to start and setup Gulp.

Now move to the myshop folder by using cd myshop and run the following command yarn install. Once the
command finishes, run the next command, yarn run gulp.

4. Install Sylius for the production environment

Now run the following command:

$ bin/console sylius:install -e prod

5. Update The Webroot of the Application

Finally, the last step is to update the webroot of the application in the Platform. Move to the Application Settings tab
and update it.

Now open the application URL as shown in the Access Details tab.

Learn more

• Cloudways PHP Hosting documentation: How to host PHP applications on DigitalOcean via Cloudways

• PHP FAQs And Features: Know more about PHP Hosting

• What You As A User Can Do With Cloudways PHP Stack

How to prepare simple CRON jobs?

What are CRON jobs?

This is what we call scheduling repetitive task on the server. In web applications this will be mainly repetitively
running specific commands.

4.1. The Cookbook 225

https://cloudways.com/blog/host-php-on-digitalocean
https://cloudways.com/en/php-cloud-hosting.php
https://cloudways.com/blog/php-stack-user-guide

Sylius

CRON jobs in Sylius

Sylius has two vital, predefined commands designed to be run as cron jobs on your server.

• sylius:remove-expired-carts - to remove carts that have expired after desired time

• sylius:cancel-unpaid-orders - to cancel orders that are still unpaid after desired time

How to configure a CRON job ?

Tip: Learn more here: Cron and Crontab usage and examples.

• How to deploy Sylius to Platform.sh?

• Advanced Platform.sh configurations

• How to deploy Sylius to Cloudways PHP Hosting?

• How to prepare simple CRON jobs?

4.1.9 Configuration

How to disable default shop, admin or API of Sylius?

When you are using Sylius as a whole you may be needing to remove some of its parts. It is possible to remove for
example Sylius shop to have only administration panel and API. Or the other way, remove API if you do not need it.

Therefore you have this guide that will help you when wanting to disable shop, admin or API of Sylius.

How to disable Sylius shop?

1. Remove SyliusShopBundle from app/AppKernel.

// # app/AppKernel.php

public function registerBundles()
{

$bundles = [
new \Sylius\Bundle\AdminBundle\SyliusAdminBundle(),
// new \Sylius\Bundle\ShopBundle\SyliusShopBundle(), // - remove or leave

→˓this line commented

new \FOS\OAuthServerBundle\FOSOAuthServerBundle(),
new \Sylius\Bundle\AdminApiBundle\SyliusAdminApiBundle(),

new \AppBundle\AppBundle(),
];

return array_merge(parent::registerBundles(), $bundles);
}

2. Remove SyliusShopBundle’s config import from app/config/config.yml.

Here you’ve got the line that should disappear from imports:

226 Chapter 4. The Cookbook

http://www.pantz.org/software/cron/croninfo.html

Sylius

imports:
- { resource: "@SyliusShopBundle/Resources/config/app/config.yml" } # remove or
→˓leave this line commented

3. Remove SyliusShopBundle routing configuration from app/config/routing.yml.

sylius_shop:
resource: "@SyliusShopBundle/Resources/config/routing.yml" # remove or leave
→˓these lines commented

4. Remove security configuration from app/config/security.yml.

The part that has to be removed from this file is shown below:

parameters:
sylius.security.shop_regex: "^/(?!admin|api/.*|api$)[^/]++"

security:
firewalls:

Delete or leave this part commented
shop:
switch_user: { role: ROLE_ALLOWED_TO_SWITCH }
context: shop
pattern: "%sylius.security.shop_regex%"
form_login:
success_handler: sylius.authentication.success_handler
failure_handler: sylius.authentication.failure_handler
provider: sylius_shop_user_provider
login_path: sylius_shop_login
check_path: sylius_shop_login_check
failure_path: sylius_shop_login
default_target_path: sylius_shop_homepage
use_forward: false
use_referer: true
csrf_token_generator: security.csrf.token_manager
csrf_parameter: _csrf_shop_security_token
csrf_token_id: shop_authenticate
remember_me:
secret: "%secret%"
name: APP_SHOP_REMEMBER_ME
lifetime: 31536000
remember_me_parameter: _remember_me
logout:
path: sylius_shop_logout
target: sylius_shop_login
invalidate_session: false
success_handler: sylius.handler.shop_user_logout
anonymous: true

access_control:
- { path: "%sylius.security.shop_regex%/_partial", role: IS_AUTHENTICATED_
→˓ANONYMOUSLY, ips: [127.0.0.1, ::1] }
- { path: "%sylius.security.shop_regex%/_partial", role: ROLE_NO_ACCESS }

- { path: "%sylius.security.shop_regex%/login", role: IS_AUTHENTICATED_
→˓ANONYMOUSLY }

- { path: "%sylius.security.shop_regex%/register", role: IS_AUTHENTICATED_
→˓ANONYMOUSLY } (continues on next page)

4.1. The Cookbook 227

Sylius

(continued from previous page)

- { path: "%sylius.security.shop_regex%/verify", role: IS_AUTHENTICATED_
→˓ANONYMOUSLY }

- { path: "%sylius.security.shop_regex%/account", role: ROLE_USER }
- { path: "%sylius.security.shop_regex%/seller/register", role: ROLE_USER }

Done! There is no shop in Sylius now, just admin and API.

How to disable Sylius Admin?

1. Remove SyliusAdminBundle from app/AppKernel.

// # app/AppKernel.php

public function registerBundles()
{

$bundles = [
// new \Sylius\Bundle\AdminBundle\SyliusAdminBundle(), // - remove or leave

→˓this line commented
new \Sylius\Bundle\ShopBundle\SyliusShopBundle(),

new \FOS\OAuthServerBundle\FOSOAuthServerBundle(),
new \Sylius\Bundle\AdminApiBundle\SyliusAdminApiBundle(),

new \AppBundle\AppBundle(),
];

return array_merge(parent::registerBundles(), $bundles);
}

2. Remove SyliusAdminBundle’s config import from app/config/config.yml.

Here you’ve got the line that should disappear from imports:

imports:
- { resource: "@SyliusAdminBundle/Resources/config/app/config.yml" } # remove or
→˓leave this line commented

3. Remove SyliusAdminBundle routing configuration from app/config/routing.yml.

sylius_admin:
resource: "@SyliusAdminBundle/Resources/config/routing.yml"

4. Remove security configuration from app/config/security.yml.

The part that has to be removed from this file is shown below:

parameters:
Delete or leave this part commented
sylius.security.admin_regex: "^/admin"

sylius.security.shop_regex: "^/(?!api/.*|api$)[^/]++" # Remove `admin|` from the
→˓pattern

security:
firewalls:

Delete or leave this part commented

(continues on next page)

228 Chapter 4. The Cookbook

Sylius

(continued from previous page)

admin:
switch_user: true
context: admin
pattern: "%sylius.security.admin_regex%"
form_login:
provider: sylius_admin_user_provider
login_path: sylius_admin_login
check_path: sylius_admin_login_check
failure_path: sylius_admin_login
default_target_path: sylius_admin_dashboard
use_forward: false
use_referer: true
csrf_token_generator: security.csrf.token_manager
csrf_parameter: _csrf_admin_security_token
csrf_token_id: admin_authenticate
remember_me:
secret: "%secret%"
path: /admin
name: APP_ADMIN_REMEMBER_ME
lifetime: 31536000
remember_me_parameter: _remember_me
logout:
path: sylius_admin_logout
target: sylius_admin_login
anonymous: true

access_control:
Delete or leave this part commented
- { path: "%sylius.security.admin_regex%/_partial", role: IS_AUTHENTICATED_
→˓ANONYMOUSLY, ips: [127.0.0.1, ::1] }
- { path: "%sylius.security.admin_regex%/_partial", role: ROLE_NO_ACCESS }

- { path: "%sylius.security.admin_regex%/login", role: IS_AUTHENTICATED_
→˓ANONYMOUSLY }

- { path: "%sylius.security.admin_regex%", role: ROLE_ADMINISTRATION_ACCESS }

Done! There is no admin in Sylius now, just api and shop.

How to disable Sylius API?

1. Remove SyliusAdminApiBundle & FOSOAuthServerBundle from app/AppKernel.

// # app/AppKernel.php

public function registerBundles()
{

$bundles = [
new \Sylius\Bundle\AdminBundle\SyliusAdminBundle(),
new \Sylius\Bundle\ShopBundle\SyliusShopBundle(),

// new \FOS\OAuthServerBundle\FOSOAuthServerBundle(),
// new \Sylius\Bundle\AdminApiBundle\SyliusAdminApiBundle(), // - remove or

→˓leave this line commented

(continues on next page)

4.1. The Cookbook 229

Sylius

(continued from previous page)

new \AppBundle\AppBundle(),
];

return array_merge(parent::registerBundles(), $bundles);
}

2. Remove SyliusAdminApiBundle’s config import from app/config/config.yml.

Here you’ve got the line that should disappear from imports:

imports:
- { resource: "@SyliusAdminApiBundle/Resources/config/app/config.yml" } # remove
→˓or leave this line commented

3. Remove SyliusAdminApiBundle routing configuration from app/config/routing.yml.

sylius_api:
resource: "@SyliusAdminApiBundle/Resources/config/routing.yml" # remove or leave
→˓these lines commented

4. Remove security configuration from app/config/security.yml.

The part that has to be removed from this file is shown below:

parameters:
Delete or leave this part commented
sylius.security.api_regex: "^/api"

sylius.security.shop_regex: "^/(?!admin$)[^/]++" # Remove `|api/.*|api` from the
→˓pattern

security:
firewalls:

Delete or leave this part commented
oauth_token:
pattern: "%sylius.security.api_regex%/oauth/v2/token"
security: false
api:
pattern: "%sylius.security.api_regex%/.*"
fos_oauth: true
stateless: true
anonymous: true

access_control:
Delete or leave this part commented
- { path: "%sylius.security.api_regex%/login", role: IS_AUTHENTICATED_
→˓ANONYMOUSLY }

- { path: "%sylius.security.api_regex%/.*", role: ROLE_API_ACCESS }

5. Remove fos_rest config from app/config/config.yml.

fos_rest:
format_listener:

rules:
- { path: '^/api', priorities: ['json', 'xml'], fallback_format: json,

→˓prefer_extension: true } # remove or leave this line commented

Done! There is no API in Sylius now, just admin and shop.

230 Chapter 4. The Cookbook

Sylius

Learn more

• Architecture: Division into Core, Shop, Admin and API

How to use installer commands?

Sylius platform ships with the sylius:install command, which takes care of creating the database, schema,
dumping the assets and basic store configuration.

This command actually uses several other commands behind the scenes and each of those is available for you:

Checking system requirements

You can quickly check all your system requirements and possible recommendations by calling the following command:

$ php bin/console sylius:install:check-requirements

Database configuration

Sylius can create or even reset the database/schema for you, simply call:

$ php bin/console sylius:install:database

The command will check if your database schema exists. If yes, you may decide to recreate it from scratch, otherwise
Sylius will take care of this automatically. It also allows you to load sample data.

Loading sample data

You can load sample data by calling the following command:

$ php bin/console sylius:install:sample-data

Basic store configuration

To configure your store, use this command and answer all questions:

$ php bin/console sylius:install:setup

Installing assets

You can reinstall all web assets by simply calling:

$ php bin/console sylius:install:assets

4.1. The Cookbook 231

Sylius

How to extend SyliusBundles and link those to an existing Sylius’s Project Database?

In some cases and from another Symfony project (non Sylius/Sylius-Standard || Sylius/Sylius installation) you may be
needing to be able to access/manipulate existing Sylius’s data.

To be able to achieve this, you will need to install the desired Sylius’s bundles, extend those, and link those to another
Entity Manager which point to your existing Sylius’s database.

For the sake of this guide, let’s assume we want to access Sylius’s users and addresses. In this way we are going to
use SyliusCustomerBundle, SyliusUserBundle, SyliusAddressingBundle.

Installing the SyliusBundles

• Install SyliusCustomerBundle

• Install SyliusUserBundle

• Install SyliusAddressingBundle

Tip: Read more about how to install SyliusCustomerBundle here.

Tip: Read more about how to install SyliusUserBundle here.

Tip: Read more about how to install SyliusAddressingBundle here.

Extending the SyliusBundles

1. Generating our own bundles:

• Generate CustomerBundle

• Generate UserBundle

• Generate AddressingBundle

Tip: Read more about how to generate your own Symfony’s bundle here.

2. Extending the Sylius’s bundles:

<?php

namespace CustomerBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class CustomerBundle extends Bundle
{

public function getParent()
{

return 'SyliusCustomerBundle';

(continues on next page)

232 Chapter 4. The Cookbook

https://symfony.com/doc/current/bundles/SensioGeneratorBundle/commands/generate_bundle.html

Sylius

(continued from previous page)

}
}

<?php

namespace UserBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class UserBundle extends Bundle
{

public function getParent()
{

return 'SyliusUserBundle';
}

}

<?php

namespace AddressingBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AddressingBundle extends Bundle
{

public function getParent()
{

return 'SyliusAddressingBundle';
}

}

3. Override the Sylius’s bundles config and link our models to some_other_em:

<?php

namespace CustomerBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

final class Configuration implements ConfigurationInterface
{

public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('sylius_customer');

return $treeBuilder;
}

}

<?php

namespace CustomerBundle\DependencyInjection;

(continues on next page)

4.1. The Cookbook 233

Sylius

(continued from previous page)

use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Loader;
use Symfony\Component\HttpKernel\DependencyInjection\Extension;

class CustomerExtension extends Extension
{

public function load(array $configs, ContainerBuilder $container)
{

$configuration = new Configuration();
$config = $this->processConfiguration($configuration, $configs);

$loader = new Loader\YamlFileLoader($container, new FileLocator(__DIR__.'/../
→˓Resources/config'));

$loader->load('services.yml');
}

}

src/CustomerBundle/Resources/config/config.yml

sylius_customer:
driver: doctrine/orm
resources:

customer:
options:

object_manager: some_other_em
classes:

model: CustomerBundle\Entity\Customer
interface: Sylius\Component\Customer\Model\CustomerInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory

customer_group:
options:

object_manager: some_other_em
classes:

model: Sylius\Component\Customer\Model\CustomerGroup
interface: Sylius\Component\Customer\Model\CustomerGroupInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory

<?php

namespace UserBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

final class Configuration implements ConfigurationInterface
{

public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('sylius_user');

return $treeBuilder;
}

(continues on next page)

234 Chapter 4. The Cookbook

Sylius

(continued from previous page)

}

<?php

namespace UserBundle\DependencyInjection;

use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Loader;
use Symfony\Component\HttpKernel\DependencyInjection\Extension;

class UserExtension extends Extension
{

public function load(array $configs, ContainerBuilder $container)
{

$configuration = new Configuration();
$config = $this->processConfiguration($configuration, $configs);

$loader = new Loader\YamlFileLoader($container, new FileLocator(__DIR__.'/../
→˓Resources/config'));

$loader->load('services.yml');
}

}

src/UserBundle/Resources/config/config.yml

sylius_user:
driver: doctrine/orm
resources:

shop:
user:

options:
object_manager: some_other_em

classes:
model: UserBundle\Entity\ShopUser
repository: Sylius\Bundle\UserBundle\Doctrine\ORM\UserRepository
interface: Sylius\Component\User\Model\UserInterface
controller: Sylius\Bundle\UserBundle\Controller\UserController
factory: Sylius\Component\Resource\Factory\Factory

templates: 'SyliusUserBundle:User'
resetting:

token:
ttl: P1D
length: 16
field_name: passwordResetToken

pin:
length: 4
field_name: passwordResetToken

verification:
token:

length: 16
field_name: emailVerificationToken

oauth:
user:

options:
object_manager: some_other_em

(continues on next page)

4.1. The Cookbook 235

Sylius

(continued from previous page)

classes:
model: Sylius\Component\User\Model\UserOAuth
interface: Sylius\Component\User\Model\UserOAuthInterface
controller:

→˓Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\UserBundle\Form\Type\UserType

templates: 'SyliusUserBundle:User'
resetting:

token:
ttl: P1D
length: 16
field_name: passwordResetToken

pin:
length: 4
field_name: passwordResetToken

verification:
token:

length: 16
field_name: emailVerificationToken

<?php

namespace AddressingBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

final class Configuration implements ConfigurationInterface
{

public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('sylius_addressing');

return $treeBuilder;
}

}

<?php

namespace AddressingBundle\DependencyInjection;

use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Loader;
use Symfony\Component\HttpKernel\DependencyInjection\Extension;

class AddressingExtension extends Extension
{

public function load(array $configs, ContainerBuilder $container)
{

$configuration = new Configuration();
$config = $this->processConfiguration($configuration, $configs);

$loader = new Loader\YamlFileLoader($container, new FileLocator(__DIR__.'/../
→˓Resources/config')); (continues on next page)

236 Chapter 4. The Cookbook

Sylius

(continued from previous page)

$loader->load('services.yml');
}

}

src/AddressingBundle/Resources/config/config.yml

sylius_addressing:
driver: doctrine/orm
resources:

address:
options:

object_manager: some_other_em
classes:

model: AddressingBundle\Entity\Address
interface: Sylius\Component\Addressing\Model\AddressInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AddressingBundle\Form\Type\AddressType

country:
options:

object_manager: some_other_em
classes:

model: Sylius\Component\Addressing\Model\Country
interface: Sylius\Component\Addressing\Model\CountryInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AddressingBundle\Form\Type\CountryType

province:
options:

object_manager: some_other_em
classes:

model: Sylius\Component\Addressing\Model\Province
interface: Sylius\Component\Addressing\Model\ProvinceInterface
controller:

→˓Sylius\Bundle\AddressingBundle\Controller\ProvinceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AddressingBundle\Form\Type\ProvinceType

zone:
options:

object_manager: some_other_em
classes:

model: Sylius\Component\Addressing\Model\Zone
interface: Sylius\Component\Addressing\Model\ZoneInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AddressingBundle\Form\Type\ZoneType

zone_member:
options:

object_manager: some_other_em
classes:

model: Sylius\Component\Addressing\Model\ZoneMember
interface: Sylius\Component\Addressing\Model\ZoneMemberInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AddressingBundle\Form\Type\ZoneMemberType

4. Import our new config files to the global config

4.1. The Cookbook 237

Sylius

app/config/config.yml

imports:
- { resource: "@CustomerBundle/Resources/config/config.yml" }
- { resource: "@UserBundle/Resources/config/config.yml" }
- { resource: "@AddressingBundle/Resources/config/config.yml" }

5. Add the proper ORM mapping in the global config

app/config/config.yml

Doctrine Configuration
doctrine:

orm:
auto_generate_proxy_classes: '%kernel.debug%'
default_entity_manager: default
resolve_target_entities:

Sylius\Component\User\Model\CustomerInterface:
→˓CustomerBundle\Entity\Customer

Sylius\Component\User\Model\UserInterface: UserBundle\Entity\ShopUser
Sylius\Component\Addressing\Model\AddressInterface:

→˓AddressingBundle\Entity\Address
entity_managers:

default:
...

some_other_em:
naming_strategy: doctrine.orm.naming_strategy.underscore
connection: some_other_connexion
auto_mapping: false
mappings:

SyliusCustomerBundle:
type: xml
dir: "%kernel.root_dir%/../vendor/sylius/customer-bundle/

→˓Resources/config/doctrine/model"
prefix: Sylius\Component\Customer\Model
is_bundle: false

CustomerBundle: ~
SyliusUserBundle:

type: xml
dir: "%kernel.root_dir%/../vendor/sylius/user-bundle/

→˓Resources/config/doctrine/model"
prefix: Sylius\Component\User\Model
is_bundle: false

UserBundle: ~
SyliusAddressingBundle:

type: xml
dir: "%kernel.root_dir%/../vendor/sylius/addressing-bundle/

→˓Resources/config/doctrine/model"
prefix: Sylius\Component\Addressing\Model
is_bundle: false

AddressingBundle: ~

6. Override the Sylius’s models and add the missing relations:

As the Sylius’s models which hold the declaration and the mapping of the relations between, in our case, SyliusCus-
tomer, SyliusUser and SyliusAddressing are provided by the SyliusCoreBundle and as we don’t have access to it we
need to redefine the relations and their related mapping on our bundles.

238 Chapter 4. The Cookbook

Sylius

<?php

namespace CustomerBundle\Entity;

use Sylius\Component\Customer\Model\Customer as BaseCustomer;
use Doctrine\Common\Collections\Collection;
use Doctrine\Common\Collections\ArrayCollection;
use AddressingBundle\Entity\Address;
use UserBundle\Entity\ShopUser;

class Customer extends BaseCustomer
{

private $defaultAddress;
private $user;
private $addresses;

public function __construct()
{

parent::__construct();

$this->addresses = new ArrayCollection();
}

/**
* Set defaultAddress

*
* @param Address $defaultAddress

*
* @return Customer

*/
public function setDefaultAddress(Address $defaultAddress = null)
{

$this->defaultAddress = $defaultAddress;

if (null !== $defaultAddress)
{

$this->addAddress($defaultAddress);
}

return $this;
}

/**
* Get defaultAddress

*
* @return Address

*/
public function getDefaultAddress()
{

return $this->defaultAddress;
}

/**
* Set user

*
* @param ShopUser $user

*

(continues on next page)

4.1. The Cookbook 239

Sylius

(continued from previous page)

* @return Customer

*/
public function setUser(ShopUser $user = null)
{

$this->user = $user;

return $this;
}

/**
* Get user

*
* @return ShopUser

*/
public function getUser()
{

return $this->user;
}

/**
* Add address

*
* @param Address $address

*
* @return Customer

*/
public function addAddress(Address $address)
{

if (!$this->hasAddress($address))
{

$this->addresses[] = $address;
$address->setCustomer($this);

}

return $this;
}

/**
* Remove address

*
* @param Address $address

*/
public function removeAddress(Address $address)
{

$this->addresses->removeElement($address);
$address->setCustomer(null);

}

/**
* Get addresses

*
* @return \Doctrine\Common\Collections\Collection

*/
public function getAddresses()
{

return $this->addresses;
}

(continues on next page)

240 Chapter 4. The Cookbook

Sylius

(continued from previous page)

public function hasAddress(Address $address)
{

return $this->addresses->contains($address);
}

}

<?php

namespace UserBundle\Entity;

use Sylius\Component\User\Model\User as BaseUser;

class ShopUser extends BaseUser
{

private $customer;

/**
* Get customer

* @return

*/
public function getCustomer()
{

return $this->customer;
}

/**
* Set customer

* @return $this

*/
public function setCustomer($customer)
{

$this->customer = $customer;
return $this;

}
}

<?php

namespace AddressingBundle\Entity;

use Sylius\Component\Addressing\Model\Address as BaseAddress;
use CustomerBundle\Entity\Customer;

class Address extends BaseAddress
{

private $customer;

/**
* Set customer

*
* @param Customer $customer

*
* @return Address

*/
public function setCustomer(Customer $customer = null)

(continues on next page)

4.1. The Cookbook 241

Sylius

(continued from previous page)

{
$this->customer = $customer;

return $this;
}

/**
* Get customer

*
* @return Customer

*/
public function getCustomer()
{

return $this->customer;
}

}

7. Add the proper ORM mapping to our models:

src/CustomerBundle/Resources/config/doctrine/Customer.orm.yml

CustomerBundle\Entity\Customer:
type: entity
table: sylius_customer
oneToOne:

defaultAddress:
targetEntity: AddressingBundle\Entity\Address
joinColumn:

name: default_address_id
onDelete: SET NULL

cascade: ["persist"]
user:

targetEntity: UserBundle\Entity\ShopUser
mappedBy: customer
cascade: ["persist"]

oneToMany:
addresses:

targetEntity: AddressingBundle\Entity\Address
mappedBy: customer
cascade: ["all"]

src/UserBundle/Resources/config/doctrine/ShopUser.orm.yml

UserBundle\Entity\ShopUser:
type: entity
table: sylius_shop_user
oneToOne:

customer:
targetEntity: CustomerBundle\Entity\Customer
inversedBy: user
joinColumn:

name: customer_id
referencedColumnName: id
nullable: false

cascade: ["persist"]

242 Chapter 4. The Cookbook

Sylius

src/AddressingBundle/Resources/config/doctrine/Address.orm.yml

AddressingBundle\Entity\Address:
type: entity
table: sylius_address
manyToOne:

customer:
targetEntity: CustomerBundle\Entity\Customer
inversedBy: addresses
joinColumn:

name: customer_id
referencedColumnName: id
nullable: true
onDelete: CASCADE

8. Final steps:

• Clear both caches

At this point you should be able to test the ORM mapping of our “some_other_em” entity manager by calling:

$ php bin/console doctrine:schema:update --dump-sql --em=some_other_em

It should returns(as we did not add any new property to our models):

Nothing to update - your database is already in sync with the current entity metadata.

9. An “issue”:

If you try in another hand to call a schema update on the default EM:

$ php bin/console doctrine:schema:update --dump-sql

It should returns:

[Doctrine\Common\Persistence\Mapping\MappingException]
The class 'UserBundle\Entity\ShopUser' was not found in the chain configured
→˓namespaces AppBundle\Entity, Sylius\Component\Customer\Model,
→˓Sylius\Component\User\Model, Sylius\Component\Ad
dressing\Model

This seems to be a “known issue” related to the shema-tool CLI command, as obviously this command uses all the
metadata collected across all mapping drivers.

To fix this I overriden the UpdateSchemaDoctrineCommand and excluded all the Sylius metadatas when the default
entity manager is specified.

<?php

namespace AppBundle\Command;

use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;
use Doctrine\ORM\Tools\SchemaTool;
use Doctrine\Bundle\DoctrineBundle\Command\Proxy\UpdateSchemaDoctrineCommand;

(continues on next page)

4.1. The Cookbook 243

Sylius

(continued from previous page)

class DoctrineUpdateCommand extends UpdateSchemaDoctrineCommand
{

protected function executeSchemaCommand(InputInterface $input, OutputInterface
→˓$output, SchemaTool $schemaTool, array $metadatas)

{
$newMetadatas = array();
foreach ($metadatas as $metadata)
{

if (empty($input->getOption('em')) || $input->getOption('em') == 'default
→˓')

{
if (explode('\\', $metadata->getName())[0] != 'Sylius')
{

array_push($newMetadatas, $metadata);
}

}
else
{

array_push($newMetadatas, $metadata);
}

}

parent::executeSchemaCommand($input, $output, $schemaTool, $newMetadatas);
}

}

• How to use installer commands?

• How to disable default shop, admin or API of Sylius?

• How to extend SyliusBundles and link those to an existing Sylius’s Project Database?

4.1.10 Frontend

How to customize Admin JS & CSS?

It is sometimes required to add your own JSS and CSS files for Sylius Admin. Achieving that is really straightforward.

We will now teach you how to do it!

How to add custom JS to Admin?

1. Prepare your own JS file:

As an example we will use a popup window script, it is easy for manual testing.

// web/assets/admin/js/custom.js
window.confirm("Your custom JS was loaded correctly!");

2. Prepare a file with your JS include, you can use the include template from SyliusUiBundle:

{# src/AppBundle/Resources/views/Admin/_javascripts.html.twig #}
{% include 'SyliusUiBundle::_javascripts.html.twig' with {'path': 'assets/admin/js/
→˓custom.js'} %} (continues on next page)

244 Chapter 4. The Cookbook

Sylius

(continued from previous page)

3. Use the Sonata block event to insert your javascripts:

Tip: Learn more about customizing templates via events in the customization guide here.

src/AppBundle/Resources/config/services.yml
services:

app.block_event_listener.admin.layout.javascripts:
class: Sylius\Bundle\UiBundle\Block\BlockEventListener
arguments:

- '@@App/Admin/_javascripts.html.twig'
tags:

- { name: kernel.event_listener, event: sonata.block.event.sylius.admin.
→˓layout.javascripts, method: onBlockEvent }

4. Additionally, to make sure everything is loaded run gulp:

$ yarn run gulp

5. Go to Sylius Admin and check the results!

How to add custom CSS to Admin?

1. Prepare your own CSS file:

As an example we will change the sidebar menu background color, what is clearly visible at first sight.

// web/assets/admin/css/custom.css
#sidebar {

background-color: #1abb9c;
}

2. Prepare a file with your CSS include, you can use the include template from SyliusUiBundle:

{# src/AppBundle/Resources/views/Admin/_stylesheets.html.twig #}
{% include 'SyliusUiBundle::_stylesheets.html.twig' with {'path': 'assets/admin/css/
→˓custom.css'} %}

3. Use the Sonata block event to insert your stylesheets:

Tip: Learn more about customizing templates via events in the customization guide here.

src/AppBundle/Resources/config/services.yml
services:

app.block_event_listener.admin.layout.stylesheets:
class: Sylius\Bundle\UiBundle\Block\BlockEventListener
arguments:

- '@@App/Admin/_stylesheets.html.twig'
tags:

- { name: kernel.event_listener, event: sonata.block.event.sylius.admin.
→˓layout.stylesheets, method: onBlockEvent }

4.1. The Cookbook 245

Sylius

4. Additionally, to make sure everything is loaded run gulp:

$ yarn run gulp

5. Go to Sylius Admin and check the results!

Learn more

• Templates customizing

• How to customize Admin JS & CSS?

246 Chapter 4. The Cookbook

CHAPTER 5

The REST API Reference

The API guide covers the REST API of Sylius platform.

5.1 The REST API Reference

5.1.1 Introduction to Sylius REST API

This part of the documentation is about RESTful JSON/XML API for the Sylius platform.

Note: This documentation assumes you have at least some experience with REST APIs.

Tip: We strongly recommend starting with our basic guide to Sylius API in the Cookbook: “How to use Sylius API?”.

5.1.2 Authorization

This part of documentation is about authorization to Sylius platform through API. In order to check this configuration,
please set up your local copy of Sylius platform and change sylius.test to your address.

OAuth2

Sylius has the OAuth2 authorization configured. The authorization process is a standard procedure. Authorize as
admin and enjoy the API!

Note: User has to have the ROLE_API_ACCESS role in order to access /api resources

247

http://symfony.com/doc/current/quick_tour

Sylius

Create OAuth client

Use Sylius command:

php bin/console sylius:oauth-server:create-client \
--grant-type="password" \
--grant-type="refresh_token" \
--grant-type="token"

You will receive client public id and client secret

Exemplary Result

A new client with public id 3e2iqilq2ygwk0ccgogkcwco8oosckkkk4gkoc0k4s8s044wss,
→˓secret 44ectenmudus8g88w4wkws84044ckw0k4w4kg0sokoss84oko8 has been added

Tip: If you use Guzzle check out OAuth2 plugin and use Password Credentials.

Obtain access token

Send the request with the following parameters:

Definition

GET /api/oauth/v2/token

Parame-
ter

Parameter
type

Description

client_id query Client public id generated in the previous step
client_secret query Client secret generated in the previous step
grant_type query We will use ‘password’ to authorize as user. Other available options are token and

refresh-token
username query User name
password query User password

Note: This action can be done by POST method as well.

Example

curl http://sylius.test/api/oauth/v2/token \
-d "client_id"=demo_client \
-d "client_secret"=secret_demo_client \
-d "grant_type"=password \
-d "username"=api@example.com \
-d "password"=sylius-api

248 Chapter 5. The REST API Reference

https://github.com/Sainsburys/guzzle-oauth2-plugin

Sylius

Tip: In a developer environment there is a default API user and client data. To use this credentials you have to load
data fixtures. Otherwise you have to use your user data and replace client id and client secret with data generated in a
previous step.

Exemplary Response

{
"access_token":

→˓"NzFiYTM4ZTEwMjcwZTcyZWIzZTA0NmY3NjE3MTIyMjM1Y2NlMmNlNWEyMTAzY2UzYmY0YWIxYmUzNTkyMDcyNQ
→˓",

"expires_in": 3600,
"token_type": "bearer",
"scope": null,
"refresh_token":

→˓"MDk2ZmIwODBkYmE3YjNjZWQ4ZTk2NTk2N2JmNjkyZDQ4NzA3YzhiZDQzMjJjODI5MmQ4ZmYxZjlkZmU1ZDNkMQ
→˓"
}

Request for a resource

Put access token in the request header:

Authorization: Bearer
→˓NzFiYTM4ZTEwMjcwZTcyZWIzZTA0NmY3NjE3MTIyMjM1Y2NlMmNlNWEyMTAzY2UzYmY0YWIxYmUzNTkyMDcyNQ

You can now access any resource you want under /api prefix.

Example

curl http://sylius.test/api/v1/users/
-H "Authorization: Bearer

→˓NzFiYTM4ZTEwMjcwZTcyZWIzZTA0NmY3NjE3MTIyMjM1Y2NlMmNlNWEyMTAzY2UzYmY0YWIxYmUzNTkyMDcyNQ
→˓"

Note: You have to refresh your token after it expires.

Refresh Token

Send request with the following parameters

Definition

GET /api/oauth/v2/token

5.1. The REST API Reference 249

Sylius

Parameter Parameter type Description
client_id query Public client id
client_secret query Client secret
grant_type query We will use ‘refresh_token’ to authorize as user
refresh_token query Refresh token generated during authorization

Example

curl http://sylius.test/api/oauth/v2/token \
-d "client_id"=demo_client \
-d "client_secret"=secret_demo_client \
-d "grant_type"=refresh_token \
-d "refresh_token

→˓"=MDk2ZmIwODBkYmE3YjNjZWQ4ZTk2NTk2N2JmNjkyZDQ4NzA3YzhiZDQzMjJjODI5MmQ4ZmYxZjlkZmU1ZDNkMQ

Exemplary Response

You can now use new token to send requests

{
"access_token":

→˓"MWExMWM0NzE1NmUyZDgyZDJiMjEzMmFlMjQ4MzgwMmE4ZTkxYzM0YjdlN2U2YzliNDIyMTk1ZDhlNDYxYWE4Ng
→˓",

"expires_in": 3600,
"token_type": "bearer",
"scope": null,
"refresh_token":

→˓"MWI4NzVkNThjZDc2Y2M1N2JiNzBmOTQ0MDFmY2U0YzVjYzllMDE1OTU5OWFiMzJiZTY5NGU4NzYyODU1N2ZjYQ
→˓"
}

Default values in dev environment

In a developer environment there are default client id, client secret and default access token provided to allow you to
test our API just out-of-the-box. In order to access them, please use the following values:

Parameter Value
client_id demo_client
client_secret secret_demo_client
grant_type password
access_token SampleToken

These values will be used later on to make it easier for you to check, how our API works.

5.1.3 Admin Users API

These endpoints will allow you to easily manage admin users. Base URI is /api/v1/users.

250 Chapter 5. The REST API Reference

Sylius

Admin User API response structure

If you request an admin user via API, you will receive an object with the following fields:

Field Description
id Admin user’s id
username Admin user’s name
email Admin user’s email
enabled Flag set if the user is enabled

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Admin user’s id
username Admin user’s name
email Admin user’s email
enabled Flag set if the user is enabled
usernameCanonical Username of the admin user in canonical form
emailCanonical Email of the admin user in canonical form
roles Roles of the admin user
firstName The admin user’s first name
lastName The admin user’s last name
localeCode Code of the language, which is used by the admin user

Note: Read more about User model in the component docs.

Creating an Admin User

To create a new admin user you will need to call the /api/v1/users/ endpoint with the POST method.

Definition

POST /api/v1/users/

Parameter Parameter type Description
Authorization header Token received during authentication
username request Admin user name
email request Admin user email
plainPassword request Admin user password
localeCode request Code of the language, which is used by the admin user

Example

To create a new admin user use the below method:

5.1. The REST API Reference 251

Sylius

$ curl http://demo.sylius.com/api/v1/users/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"username": "Balrog",
"email": "teamEvil@middleearth.com",
"plainPassword": "youShallNotPass",
"localeCode": "en_US"

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 7,
"username": "Balrog",
"usernameCanonical": "balrog",
"roles": [

"ROLE_ADMINISTRATION_ACCESS"
],
"email": "teamEvil@middleearth.com",
"emailCanonical": "teamevil@middleearth.com",
"enabled": false

}

Warning: If you try to create an admin user without username, email, password or locale’s code, you will receive
a 400 Bad Request error, that will contain validation errors.

Example

$ curl http://demo.sylius.com/api/v1/users/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \

-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {

(continues on next page)

252 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"username": {
"errors": [

"Please enter your name."
]

},
"email": {

"errors": [
"Please enter your email."

]
},
"plainPassword": {

"errors": [
"Please enter your password."

]
},
"enabled": {},
"firstName": {},
"lastName": {},
"localeCode": {

"errors": [
"Please choose a locale."

]
}

}
}

}

You can also create an admin user with additional (not required) fields:

Parameter Parameter type Description
enabled request Flag set if the user is enabled
firstName request The admin user’s first name
lastName request The admin user’s last name

Example

$ curl http://demo.sylius.com/api/v1/users/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"firstName": "Balrog",
"lastName": "of Morgoth",
"username": "Balrog",
"email": "teamEvil@middleearth.com",
"plainPassword": "youShallNotPass",
"localeCode": "en_US",
"enabled": "true"

}
'

5.1. The REST API Reference 253

Sylius

Exemplary Response

STATUS: 201 CREATED

{
"id": 9,
"username": "Balrog",
"usernameCanonical": "balrog",
"roles": [

"ROLE_ADMINISTRATION_ACCESS"
],
"email": "teamEvil@middleearth.com",
"emailCanonical": "teamevil@middleearth.com",
"enabled": true,
"firstName": "Balrog",
"lastName": "of Morgoth"

}

Getting a Single Admin User

To retrieve the details of an admin user you will need to call the /api/v1/users/{id} endpoint with the GET
method.

Definition

GET /api/v1/users/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the admin user

Example

To see the details for the admin user with id = 9 use the below method:

$ curl http://demo.sylius.com/api/v1/users/9 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The 9 id is an exemplary value. Your value can be different. Check in the list of all admin users if you are not
sure which id should be used.

Exemplary Response

STATUS: 200 OK

254 Chapter 5. The REST API Reference

Sylius

{
"id": 9,
"username": "Balrog",
"usernameCanonical": "balrog",
"roles": [

"ROLE_ADMINISTRATION_ACCESS"
],
"email": "teamEvil@middleearth.com",
"emailCanonical": "teamevil@middleearth.com",
"enabled": true,
"firstName": "Balrog",
"lastName": "of Morgoth"

}

Collection of Admin Users

To retrieve a paginated list of admin users you will need to call the /api/v1/users/ endpoint with the GET
method.

Definition

GET /api/v1/users/

Parameter Parameter type Description
Authorization header Token received during authentication
limit query (optional) Number of items to display per page, by default = 10

To see the first page of all admin users use the below method:

Example

$ curl http://demo.sylius.com/api/v1/users/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 4,
"pages": 1,
"total": 3,
"_links": {

"self": {
"href": "\/api\/v1\/users\/?sorting%5Bcode%5D=desc&page=1&limit=4"

},

(continues on next page)

5.1. The REST API Reference 255

Sylius

(continued from previous page)

"first": {
"href": "\/api\/v1\/users\/?sorting%5Bcode%5D=desc&page=1&limit=4"

},
"last": {

"href": "\/api\/v1\/users\/?sorting%5Bcode%5D=desc&page=1&limit=4"
}

},
"_embedded": {

"items": [
{

"id": 5,
"username": "sylius",
"email": "sylius@example.com",
"enabled": true

},
{

"id": 6,
"username": "api",
"email": "api@example.com",
"enabled": true

},
{

"id": 9,
"username": "Balrog",
"email": "teamEvil@middleearth.com",
"enabled": true

}
]

}
}

Updating an Admin User

To fully update an admin user you will need to call the /api/v1/users/{id} endpoint with the PUT method.

Definition

PUT /api/v1/users/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the admin user
username request Admin user name
email request Admin user email
plainPassword request Admin user password
localeCode request Code of the language, which is used by the admin user

Example

To fully update the admin user with id = 9 use the below method:

256 Chapter 5. The REST API Reference

Sylius

$ curl http://demo.sylius.com/api/v1/users/9 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"firstName": "Gollum",
"lastName": "Gollum!",
"username": "Smeagol",
"email": "smeagol@middleearth.com",
"plainPassword": "myPrecious",
"localeCode": "en_US"

}
'

Exemplary Response

STATUS: 204 No Content

If you try to perform a full admin user update without all the required fields specified, you will receive a 400 Bad
Request error.

Example

$ curl http://demo.sylius.com/api/v1/users/9 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"username": {

"errors": [
"Please enter your name."

]
},
"email": {

"errors": [
"Please enter your email."

]
},
"plainPassword": {},
"enabled": {},
"firstName": {},

(continues on next page)

5.1. The REST API Reference 257

Sylius

(continued from previous page)

"lastName": {},
"localeCode": {

"errors": [
"Please choose a locale."

]
}

}
}

}

To update an admin user partially you will need to call the /api/v1/users/{id} endpoint with the PATCH
method.

Definition

PATCH /api/v1/users/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the admin user

Example

To partially update the admin user with id = 9 use the below method:

$ curl http://demo.sylius.com/api/v1/users/9 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PATCH \
--data '

{
"email": "smeagol@ring.com"

}
'

Exemplary Response

STATUS: 204 No Content

Deleting an Admin User

To delete an admin user you will need to call the /api/v1/users/{id} endpoint with the DELETE method.

Definition

DELETE /api/v1/users/{id}

258 Chapter 5. The REST API Reference

Sylius

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the admin user

Example

To delete the admin user with id = 9 use the below method:

$ curl http://demo.sylius.com/api/v1/users/9 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

Warning: If you try to delete the admin user which is currently logged in, you will receive a 422
Unprocessable Entity error.

Example

$ curl http://demo.sylius.com/api/v1/users/6 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 422 Unprocessable Entity

{
"code": 422,
"message": "Cannot remove currently logged in user."

}

5.1.4 Carts API

These endpoints will allow you to easily manage cart and cart items. Base URI is /api/v1/carts/.

Note: Remember that a Cart in Sylius is an Order in the state cart.

If you don’t understand the difference between Cart and Order concepts in Sylius yet, please read this article carefully.

5.1. The REST API Reference 259

Sylius

Cart API response structure

If you request a cart via API, you will receive an object with the following fields:

Field Description
id Id of the cart
items List of items in the cart
itemsTotal Sum of all items prices
adjustments List of adjustments related to the cart
adjustmentsTotal Sum of all cart adjustments values
total Sum of items total and adjustments total
customer The customer object serialized with the default data for cart
channel The channel object serialized with the default data
currencyCode Currency of the cart
localeCode Locale of the cart
checkoutState State of the checkout process of the cart

CartItem API response structure

Each CartItem in an API response will be build as follows:

Field Description
id Id of the cart item
quantity Quantity of item units
unitPrice Price of each item unit
total Sum of units total and adjustments total of that cart item
units A collection of units related to the cart item
unitsTotal Sum of all units prices of the cart item
adjustments List of adjustments related to the cart item
adjustmentsTotal Sum of all item adjustments related to that cart item
variant The product variant object serialized with the default data
_link[product] Relative link to product
_link[variant] Relative link to variant
_link[order] Relative link to order

CartItemUnit API response structure

Each CartItemUnit API response will be build as follows:

Field Description
id Id of the cart item unit
adjustments List of adjustments related to the unit
adjustmentsTotal Sum of all units adjustments of the unit

Adjustment API response structure

And each Adjustment will be build as follows:

260 Chapter 5. The REST API Reference

Sylius

Field Description
id Id of the adjustment
type Type of the adjustment (E.g. order_promotion or tax)
label Label of the adjustment
amount Amount of the adjustment (value)

Note: If it is confusing to you, learn more about Carts (Orders) in the component docs and Adjustments concept.

Creating a Cart

To create a new cart you will need to call the /api/v1/carts/ endpoint with the POST method.

Definition

POST /api/v1/carts/

Parameter Parameter type Description
Authorization header Token received during authentication
customer request Email of the related customer
channel request Code of the related channel
localeCode request Code of the locale in which the cart should be created

Example

To create a new cart for the shop@example.com user in the US_WEB channel with the en_US locale use the below
method:

Warning: Remember, that it doesn’t replicate the environment of shop usage. It is more like an admin part of cart
creation, which will allow you to manage the cart from the admin perspective. ShopAPI is still an experimental
concept.

$ curl http://demo.sylius.com/api/v1/carts/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"customer": "shop@example.com",
"channel": "US_WEB",
"localeCode": "en_US"

}
'

5.1. The REST API Reference 261

Sylius

Exemplary Response

STATUS: 201 Created

{
"id":21,
"items":[

],
"itemsTotal":0,
"adjustments":[

],
"adjustmentsTotal":0,
"total":0,
"customer":{

"id":1,
"email":"shop@example.com",
"firstName":"John",
"lastName":"Doe",
"user":{

"id":1,
"username":"shop@example.com",
"usernameCanonical":"shop@example.com"

},
"_links":{

"self":{
"href":"\/api\/v1\/customers\/1"

}
}

},
"channel":{

"code":"US_WEB",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/US_WEB"

}
}

},
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"cart"

}

Note: A currency code will be added automatically based on the channel settings. Read more about channels here.

Warning: If you try to create a resource without localeCode, channel or customer, you will receive a 400 Bad
Request error, that will contain validation errors.

262 Chapter 5. The REST API Reference

Sylius

Example

$ curl http://demo.sylius.com/api/v1/carts/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code":400,
"message":"Validation Failed",
"errors":{

"children":{
"customer":{

"errors":[
"This value should not be blank."

]
},
"localeCode":{

"errors":[
"This value should not be blank."

]
},
"channel":{

"errors":[
"This value should not be blank."

]
}

}
}

}

Collection of Carts

To retrieve a paginated list of carts you will need to call the /api/v1/carts/ endpoint with the GET method.

Definition

GET /api/v1/carts/

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
paginate query (optional) Number of carts displayed per page, by default = 10

5.1. The REST API Reference 263

Sylius

Example

To see the first page of the paginated carts collection use the below method:

$ curl http://demo.sylius.com/api/v1/carts/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page":1,
"limit":10,
"pages":1,
"total":1,
"_links":{

"self":{
"href":"\/api\/v1\/carts\/?page=1&limit=10"

},
"first":{

"href":"\/api\/v1\/carts\/?page=1&limit=10"
},
"last":{

"href":"\/api\/v1\/carts\/?page=1&limit=10"
}

},
"_embedded":{

"items":[
{

"id":21,
"items":[

],
"itemsTotal":0,
"adjustments":[

],
"adjustmentsTotal":0,
"total":0,
"customer":{

"id":1,
"email":"shop@example.com",
"firstName":"John",
"lastName":"Doe",
"user":{

"id":1,
"username":"shop@example.com",
"enabled":true

},
"_links":{

"self":{
"href":"\/api\/v1\/customers\/1"

}

(continues on next page)

264 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

}
},
"channel":{

"id":1,
"code":"US_WEB",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/US_WEB"

}
}

},
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"cart"

}
]

}
}

Getting a Single Cart

To retrieve details of the cart you will need to call the /api/v1/carts/{id} endpoint with GET method.

Definition

GET /api/v1/carts/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested cart

Example

To see details of the cart with id = 21 use the below method:

$ curl http://demo.sylius.com/api/v1/carts/21 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The 21 value was taken from the previous create response. Your value can be different. Check in the list of all
carts if you are not sure which id should be used.

Exemplary Response

STATUS: 200 OK

5.1. The REST API Reference 265

Sylius

{
"id":21,
"items":[

],
"itemsTotal":0,
"adjustments":[

],
"adjustmentsTotal":0,
"total":0,
"customer":{

"id":1,
"email":"shop@example.com",
"firstName":"John",
"lastName":"Doe",
"user":{

"id":1,
"username":"shop@example.com",
"usernameCanonical":"shop@example.com"

},
"_links":{

"self":{
"href":"\/api\/v1\/customers\/1"

}
}

},
"channel":{

"code":"US_WEB",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/US_WEB"

}
}

},
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"cart"

}

Deleting a Cart

To delete a cart you will need to call the /api/v1/carts/{id} endpoint with the DELETE method.

Definition

DELETE /api/v1/carts/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested cart

266 Chapter 5. The REST API Reference

Sylius

Example

To delete the cart with id = 21 use the below method:

$ curl http://demo.sylius.com/api/v1/carts/21 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Note: Remember the 21 value comes from the previous example. Here we are deleting a previously fetched cart, so
it is the same id.

Exemplary Response

STATUS: 204 No Content

Creating a Cart Item

To add a new cart item to an existing cart you will need to call the /api/v1/carts/{cartId}/items/ endpoint
with POST method.

Definition

POST /api/v1/carts/{cartId}/items/

Parameter Parameter type Description
Authorization header Token received during authentication
cartId url attribute Id of the requested cart
variant request Code of the item you want to add to the cart
quantity request Amount of variants you want to add to the cart (cannot be < 1)

Example

To add a new item of a variant with code MEDIUM_MUG_CUP to the cart with id = 21 (assuming, that we didn’t
remove it in the previous example) use the below method:

$ curl http://demo.sylius.com/api/v1/carts/21/items/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"variant": "MEDIUM_MUG_CUP",
"quantity": 1

}
'

5.1. The REST API Reference 267

Sylius

Exemplary Response

STATUS: 201 Created

{
"id":57,
"quantity":1,
"unitPrice":250,
"total":250,
"units":[

{
"id":165,
"adjustments":[

],
"adjustmentsTotal":0

}
],
"unitsTotal":250,
"adjustments":[

],
"adjustmentsTotal":0,
"variant":{

"id":331,
"code":"MEDIUM_MUG_CUP",
"optionValues":[

{
"code":"mug_type_medium",
"translations":{

"en_US":{
"id":1,
"value":"Medium mug"

}
}

}
],
"position":2,
"translations":{

"en_US":{
"id":331,
"name":"Medium Mug"

}
},
"tracked":false,
"channelPricings":{

"US_WEB": {
"channelCode": "US_WEB",
"price":250

}
}

},
"_links":{

"order":{
"href":"\/api\/v1\/orders\/21"

},
"product":{

(continues on next page)

268 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"href":"\/api\/v1\/products\/07f2044a-855d-3c56-9274-b5167c2d5809"
},
"variant":{

"href":"\/api\/v1\/products\/07f2044a-855d-3c56-9274-b5167c2d5809\/
→˓variants\/MEDIUM_MUG_CUP"

}
}

}

Tip: In Sylius the prices are stored as an integers (1059 represents 10.59$). So in order to present a proper amount
to the end user, you should divide price by 100 by default.

Updating a Cart Item

To change the quantity of a cart item you will need to call the /api/v1/carts/{cartId}/items/
{cartItemId} endpoint with the PUT or PATCH method.

Definition

PUT /api/v1/carts/{cartId}/items/{cartItemId}

Parameter Parameter type Description
Authorization header Token received during authentication
cartId url attribute Id of the requested cart
cartItemId url attribute Id of the requested cart item
quantity request Amount of items you want to have in the cart (cannot be < 1)

Example

To change the quantity of the cart item with id = 57 in the cart of id = 21 to 3 use the below method:

$ curl http://demo.sylius.com/api/v1/carts/21/items/57 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '{"quantity": 3}'

Tip: If you are not sure where does the value 58 come from, check the previous response, and look for the cart item
id.

Exemplary Response

STATUS: 204 No Content

Now we can check how does the cart look like after changing the quantity of a cart item.

5.1. The REST API Reference 269

Sylius

$ curl http://demo.sylius.com/api/v1/carts/21 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"id":21,
"items":[

{
"id":57,
"quantity":3,
"unitPrice":250,
"total":750,
"units":[

{
"id":165,
"adjustments":[

],
"adjustmentsTotal":0

},
{

"id":166,
"adjustments":[

],
"adjustmentsTotal":0

},
{

"id":167,
"adjustments":[

],
"adjustmentsTotal":0

}
],
"unitsTotal":750,
"adjustments":[

],
"adjustmentsTotal":0,
"variant":{

"id":331,
"code":"MEDIUM_MUG_CUP",
"optionValues":[

{
"code":"mug_type_medium",
"translations":{

"en_US":{
"id":1,
"value":"Medium mug"

}

(continues on next page)

270 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

}
}

],
"position":2,
"translations":{

"en_US":{
"id":331,
"name":"Medium Mug"

}
},
"tracked":false,
"channelPricings":{

"US_WEB": {
"channelCode": "US_WEB",
"price":250

}
}

},
"_links":{

"order":{
"href":"\/api\/v1\/orders\/21"

},
"product":{

"href":"\/api\/v1\/products\/07f2044a-855d-3c56-9274-b5167c2d5809"
},
"variant":{

"href":"\/api\/v1\/products\/07f2044a-855d-3c56-9274-
→˓b5167c2d5809\/variants\/MEDIUM_MUG_CUP"

}
}

}
],
"itemsTotal":750,
"adjustments":[

{
"id":181,
"type":"shipping",
"label":"UPS",
"amount":157

}
],
"adjustmentsTotal":157,
"total":907,
"customer":{

"id":1,
"email":"shop@example.com",
"firstName":"John",
"lastName":"Doe",
"user":{

"id":1,
"username":"shop@example.com",
"usernameCanonical":"shop@example.com"

},
"_links":{

"self":{
"href":"\/api\/v1\/customers\/1"

}
(continues on next page)

5.1. The REST API Reference 271

Sylius

(continued from previous page)

}
},
"channel":{

"code":"US_WEB",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/US_WEB"

}
}

},
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"cart"

}

Tip: In this response you can see that promotion and shipping have been taken into account to calculate the appropriate
price.

Deleting a Cart Item

To delete a cart item from a cart you will need to call the /api/v1/carts/{cartId}/items/{cartItemId}
endpoint with the DELETE method.

Definition

To delete the cart item with id = 58 from the cart with id = 21 use the below method:

DELETE /api/v1/carts/{cartId}/items/{cartItemId}

Parameter Parameter type Description
Authorization header Token received during authentication
cartId url attribute Id of the requested cart
cartItemId url attribute Id of the requested cart item

Example

$ curl http://demo.sylius.com/api/v1/carts/21/items/58 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

272 Chapter 5. The REST API Reference

Sylius

5.1.5 Channels API

These endpoints will allow you to easily manage channels. Base URI is /api/v1/channels.

Channel API response structure

If you request a channel via API, you will receive an object with the following fields:

Field Description
id Id of the channel
code Unique channel identifier

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the channel
code Unique channel identifier
taxCalculationStrategy Strategy which will be applied during processing orders in the channel
name Name of the channel
hostname Name of the host for the channel
enabled Gives an information about channel availability
description Description of the channel
color Allows to recognize orders made in the channel
createdAt The channel’s creation date
updatedAt The channel’s last updating date

Note: Read more about Channels docs.

Getting a Single Channel

To retrieve the details of a specific channel you will need to call the /api/v1/channels/{code} endpoint with
the GET method.

Definition

GET /api/v1/channels/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of requested channel

Example

To see the details of the channel with code = US_WEB use the below method:

5.1. The REST API Reference 273

Sylius

$ curl http://demo.sylius.com/api/v1/channels/US_WEB \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The US_WEB code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

{
"id": 1,
"code": "US_WEB",
"name": "US Web Store",
"hostname": "localhost",
"color": "Wheat",
"createdAt": "2017-02-10T13:14:20+0100",
"updatedAt": "2017-02-10T13:14:20+0100",
"enabled": true,
"taxCalculationStrategy": "order_items_based",
"_links": {

"self": {
"href": "\/api\/v1\/channels\/US_WEB"

}
}

}

5.1.6 Checkout API

These endpoints will allow you to go through the order checkout from the admin perspective. It can be useful for
integrations with tools like Twillo or an inspiration for your custom Shop API. Base URI is /api/v1/checkouts/.

After you create a cart (an empty order) and add some items to it, you can start the checkout via API. This basically
means updating the order with concrete information, step by step, in a correct order.

Sylius checkout flow is built from 4 steps, which have to be done in a certain order (unless you will customize it).

Step Description
addressing Shipping and billing addresses are assigned to the cart
shipping Choosing a shipping method from the available ones
payment Choosing a payment method from the available ones
finalize The order is built and its data can be confirmed

Tip: If you are not familiar with the concept of checkout in Sylius, please carefully read this article first.

Note: We do not present the order serialization in this chapter, because it is the same order serialization as described
in the article about orders.

274 Chapter 5. The REST API Reference

https://www.twilio.com/docs/

Sylius

Addressing step

After you added some items to the cart, to start the checkout you simply need to provide a shipping address. You can
also specify a different billing address if needed.

Definition

PUT /api/v1/checkouts/addressing/{id}

Parameter Parameter
type

Description

Authorization header Token received during authentication
id url attribute Id of the requested cart
differentBillingAd-
dress

request If false, the billing address fields are not required and data from the ship-
ping address is copied

shippingAd-
dress[firstName]

request First name for the shipping address

shippingAd-
dress[lastName]

request Last name for the shipping address

shippingAd-
dress[city]

request City name

shippingAd-
dress[postcode]

request Postcode

shippingAd-
dress[street]

request Street

shippingAd-
dress[country]

request Id of the country

shippingAd-
dress[province]

request (optional) Id of the province

billingAd-
dress[firstName]

request (optional) First name for the billing address

billingAd-
dress[lastName]

request (optional) Last name for the billing address

billingAddress[city] request (optional) City name
billingAd-
dress[postcode]

request (optional) Postcode

billingAddress[street] request (optional) Street
billingAd-
dress[country]

request (optional) Id of the country

billingAd-
dress[province]

request (optional) Id of the province

Note: Remember a cart with id = 21 for the Cart API documentation? We will take the same cart as an exemplary
cart for checkout process.

Example

To address the cart for a user that lives in Los Angeles in the United States, the following snippet can be used:

5.1. The REST API Reference 275

Sylius

$ curl http://demo.sylius.com/api/v1/checkouts/addressing/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"shippingAddress": {

"firstName": "Elon",
"lastName": "Musk",
"street": "10941 Savona Rd",
"countryCode": "US",
"city": "’Los Angeles",
"postcode": "CA 90077"

},
"differentBillingAddress": false

}
'

Exemplary Response

STATUS: 204 No Content

Now you can check the state of the order, by asking for the checkout summary:

Example

To check the checkout process state for the cart with id = 21, we need to execute this command:

$ curl http://demo.sylius.com/api/v1/checkouts/21 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 Ok

{
"id":21,
"items":[

{
"id":74,
"quantity":1,
"unitPrice":100000,
"total":100000,
"units":[

{
"id":228,
"adjustments":[
],
"adjustmentsTotal":0

}

(continues on next page)

276 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

],
"unitsTotal":100000,
"adjustments":[
],
"adjustmentsTotal":0,
"variant":{

"id":331,
"code":"MEDIUM_MUG_CUP",
"optionValues":[

{
"code":"mug_type_medium"

}
],
"position":2,
"translations":{

"en_US":{
}

},
"onHold":0,
"onHand":10,
"tracked":false,
"channelPricings":{

"US_WEB":{
"channelCode": "US_WEB",
"price":100000

}
}

},
"_links":{

"product":{
"href":"\/api\/v1\/products\/5"

},
"variant":{

"href":"\/api\/v1\/products\/5\/variants\/331"
}

}
}

],
"itemsTotal":100000,
"adjustments":[

{
"id":249,
"type":"shipping",
"label":"UPS",
"amount":8787

}
],
"adjustmentsTotal":8787,
"total":108787,
"state":"cart",
"customer":{

"id":1,
"email":"shop@example.com",
"emailCanonical":"shop@example.com",
"firstName":"John",
"lastName":"Doe",
"gender":"u",

(continues on next page)

5.1. The REST API Reference 277

Sylius

(continued from previous page)

"user":{
"id":1,
"username":"shop@example.com",
"usernameCanonical":"shop@example.com",
"roles":[

"ROLE_USER"
],
"enabled":true

},
"_links":{

"self":{
"href":"\/api\/v1\/customers\/1"

}
}

},
"channel":{

"id":1,
"code":"US_WEB",
"name":"US Web Store",
"hostname":"localhost",
"color":"MediumPurple",
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"enabled":true,
"taxCalculationStrategy":"order_items_based",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/1"

}
}

},
"shippingAddress":{

"firstName":"Elon",
"lastName":"Musk",
"countryCode":"US",
"street":"10941 Savona Rd",
"city":"\u2019Los Angeles",
"postcode":"CA 90077"

},
"billingAddress":{

"firstName":"Elon",
"lastName":"Musk",
"countryCode":"US",
"street":"10941 Savona Rd",
"city":"\u2019Los Angeles",
"postcode":"CA 90077"

},
"payments":[

{
"id":21,
"method":{

"id":1,
"code":"cash_on_delivery"

},
"amount":108787,
"state":"cart"

}
(continues on next page)

278 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

],
"shipments":[

{
"id":21,
"state":"cart",
"method":{

"code":"ups",
"enabled":true

}
}

],
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"addressed"

}

Of course, you can specify different shipping and billing addresses. If our user Elon would like to send a gift to the
NASA administrator, Frederick D. Gregory, he could send the following request:

$ curl http://demo.sylius.com/api/v1/checkouts/addressing/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"shippingAddress": {

"firstName": " Frederick D.",
"lastName": "Gregory",
"street": "300 E St SW",
"countryCode": "US",
"city": "’Washington",
"postcode": "DC 20546"

},
"differentBillingAddress": true,
"billingAddress": {

"firstName": "Elon",
"lastName": "Musk",
"street": "10941 Savona Rd",
"countryCode": "US",
"city": "’Los Angeles",
"postcode": "CA 90077"

}
}

'

Exemplary Response

STATUS: 204 No Content

Shipping step

When the order contains the address information, we are able to determine the available shipping methods. First, we
need to get the available shipping methods to have our choice list:

5.1. The REST API Reference 279

Sylius

Definition

GET /api/v1/checkouts/select-shipping/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested cart

Example

To check available shipping methods for the previously addressed cart, you can use the following command:

$ curl http://demo.sylius.com/api/v1/checkouts/select-shipping/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json"

STATUS: 200 OK

{
"shipments":[

{
"methods":[

{
"id":1,
"code":"ups",
"name":"UPS",
"description":"Dolorem consequatur itaque neque non voluptas

→˓dolor.",
"price":8787

},
{

"id":2,
"code":"dhl_express",
"name":"DHL Express",
"description":"Voluptatem ipsum dolor vitae corrupti eum repellat.

→˓",
"price":3549

},
{

"id":3,
"code":"fedex",
"name":"FedEx",
"description":"Qui nostrum minus accusantium molestiae voluptatem

→˓eaque.",
"price":3775

}
]

}
]

}

The response contains proposed shipments and for each of them, it has a list of the available shipping methods along-
side their calculated prices.

280 Chapter 5. The REST API Reference

Sylius

Warning: Because of the custom calculation logic, the regular rules of overriding do not apply for this endpoint.
In order to have a different response, you have to provide a custom controller and build the message on your own.
Exemplary implementation can be found here

Next step is updating the order with the types of shipping methods that have been selected. A PUT request has to be
send for each available shipment.

Definition

PUT /api/v1/checkouts/select-shipping/{id}

Parameter Parameter
type

Description

Authorization header Token received during authentication
id url attribute Id of the requested cart
ship-
ments[X][‘method’]

request Code of the chosen shipping method (Where X is the number of shipment
in the returned array)

Example

To choose the DHL Express method for our shipment (the cheapest one), we can use the following snippet:

$ curl http://demo.sylius.com/api/v1/checkouts/select-shipping/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"shipments": [

{
"method": "dhl_express"

}
]

}
'

Exemplary Response

STATUS: 204 No Content

While checking for the checkout process state of the cart with id = 21, you will get the following response:

Exemplary Response

STATUS: 200 OK

{

(continues on next page)

5.1. The REST API Reference 281

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/AdminApiBundle/Controller/ShowAvailableShippingMethodsController.php

Sylius

(continued from previous page)

"id":21,
"items":[

{
"id":74,
"quantity":1,
"unitPrice":100000,
"total":100000,
"units":[

{
"id":228,
"adjustments":[
],
"adjustmentsTotal":0

}
],
"unitsTotal":100000,
"adjustments":[
],
"adjustmentsTotal":0,
"variant":{

"id":331,
"code":"MEDIUM_MUG_CUP",
"optionValues":[

{
"code":"mug_type_medium"

}
],
"position":2,
"translations":{

"en_US":{
}

},
"onHold":0,
"onHand":10,
"tracked":false,
"channelPricings":{

"US_WEB":{
"channelCode": "US_WEB",
"price":100000

}
}

},
"_links":{

"product":{
"href":"\/api\/v1\/products\/5"

},
"variant":{

"href":"\/api\/v1\/products\/5\/variants\/331"
}

}
}

],
"itemsTotal":100000,
"adjustments":[

{
"id":251,
"type":"shipping",

(continues on next page)

282 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"label":"DHL Express",
"amount":3549

}
],
"adjustmentsTotal":3549,
"total":103549,
"state":"cart",
"customer":{

"id":1,
"email":"shop@example.com",
"emailCanonical":"shop@example.com",
"firstName":"John",
"lastName":"Doe",
"gender":"u",
"user":{

"id":1,
"username":"shop@example.com",
"usernameCanonical":"shop@example.com",
"roles":[

"ROLE_USER"
],
"enabled":true

},
"_links":{

"self":{
"href":"\/api\/v1\/customers\/1"

}
}

},
"channel":{

"id":1,
"code":"US_WEB",
"name":"US Web Store",
"hostname":"localhost",
"color":"MediumPurple",
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"enabled":true,
"taxCalculationStrategy":"order_items_based",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/1"

}
}

},
"shippingAddress":{

"firstName":"Frederick D.",
"lastName":"Gregory",
"countryCode":"US",
"street":"300 E St SW",
"city":"\u2019Washington",
"postcode":"DC 20546"

},
"billingAddress":{

"firstName":"Frederick D.",
"lastName":"Gregory",
"countryCode":"US",

(continues on next page)

5.1. The REST API Reference 283

Sylius

(continued from previous page)

"street":"300 E St SW",
"city":"\u2019Washington",
"postcode":"DC 20546"

},
"payments":[

{
"id":21,
"method":{

"id":1,
"code":"cash_on_delivery"

},
"amount":103549,
"state":"cart"

}
],
"shipments":[

{
"id":21,
"state":"cart",
"method":{

"code":"dhl_express",
"enabled":true

}
}

],
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"shipping_selected"

}

Payment step

When we are done with shipping choices and we know the final price of an order, we can select a payment method.

Definition

GET /api/v1/checkouts/select-payment/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested cart

Warning: Similar to the shipping step, this one has its own controller, which has to be replaced if you want to
make some changes. Exemplary implementation can be found here

Example

To check available payment methods for the cart that has a shipping methods assigned, we need to execute this curl
command:

284 Chapter 5. The REST API Reference

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/AdminApiBundle/Controller/ShowAvailablePaymentMethodsController.php

Sylius

$ curl http://demo.sylius.com/api/v1/checkouts/select-payment/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json"

STATUS: 200 OK

{
"payments":[

{
"methods":[

{
"id":1,
"code":"cash_on_delivery",
"name":"Cash on delivery",
"description":"Ipsum dolor non esse quia sit."

},
{

"id":2,
"code":"bank_transfer",
"name":"Bank transfer",
"description":"Perspiciatis itaque earum quisquam ut dolor."

}
]

}
]

}

With that information, another PUT request with the id of payment method is enough to proceed:

Definition

PUT /api/v1/checkouts/select-payment/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested cart
payment[X][‘method’] request Code of chosen payment method

Example

To choose the Bank transfer method for our shipment, simply use the following code:

$ curl http://demo.sylius.com/api/v1/checkouts/select-payment/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"payments": [

{
"method": "bank_transfer"

}

(continues on next page)

5.1. The REST API Reference 285

Sylius

(continued from previous page)

]
}

'

Exemplary Response

STATUS: 204 No Content

Finalize step

After choosing the payment method we are ready to finalize the cart and make an order. Now, you can get its snapshot
by calling a GET request:

Tip: The same definition has been used over this chapter, to see the current state of the order.

Definition

GET /api/v1/checkouts/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested cart

Example

To check the fully constructed cart with id = 21, use the following command:

$ curl http://demo.sylius.com/api/v1/checkouts/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json"

STATUS: 200 OK

{
"id":21,
"items":[

{
"id":74,
"quantity":1,
"unitPrice":100000,
"total":100000,
"units":[

{
"id":228,
"adjustments":[

(continues on next page)

286 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

],
"adjustmentsTotal":0

}
],
"unitsTotal":100000,
"adjustments":[
],
"adjustmentsTotal":0,
"variant":{

"id":331,
"code":"MEDIUM_MUG_CUP",
"optionValues":[

{
"code":"mug_type_medium"

}
],
"position":2,
"translations":{

"en_US":{
}

},
"onHold":0,
"onHand":10,
"tracked":false,
"channelPricings":{

"US_WEB":{
"channelCode":"US_WEB",
"price":100000

}
}

},
"_links":{

"product":{
"href":"\/api\/v1\/products\/5"

},
"variant":{

"href":"\/api\/v1\/products\/5\/variants\/331"
}

}
}

],
"itemsTotal":100000,
"adjustments":[

{
"id":252,
"type":"shipping",
"label":"DHL Express",
"amount":3549

}
],
"adjustmentsTotal":3549,
"total":103549,
"state":"cart",
"customer":{

"id":1,
"email":"shop@example.com",
"emailCanonical":"shop@example.com",

(continues on next page)

5.1. The REST API Reference 287

Sylius

(continued from previous page)

"firstName":"John",
"lastName":"Doe",
"gender":"u",
"user":{

"id":1,
"username":"shop@example.com",
"usernameCanonical":"shop@example.com",
"roles":[

"ROLE_USER"
],
"enabled":true

},
"_links":{

"self":{
"href":"\/api\/v1\/customers\/1"

}
}

},
"channel":{

"id":1,
"code":"US_WEB",
"name":"US Web Store",
"hostname":"localhost",
"color":"MediumPurple",
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"enabled":true,
"taxCalculationStrategy":"order_items_based",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/1"

}
}

},
"shippingAddress":{

"firstName":"Frederick D.",
"lastName":"Gregory",
"countryCode":"US",
"street":"300 E St SW",
"city":"\u2019Washington",
"postcode":"DC 20546"

},
"billingAddress":{

"firstName":"Frederick D.",
"lastName":"Gregory",
"countryCode":"US",
"street":"300 E St SW",
"city":"\u2019Washington",
"postcode":"DC 20546"

},
"payments":[

{
"id":21,
"method":{

"id":2,
"code":"bank_transfer"

},
(continues on next page)

288 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"amount":103549,
"state":"cart"

}
],
"shipments":[

{
"id":21,
"state":"cart",
"method":{

"code":"dhl_express",
"enabled":true

}
}

],
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"payment_selected"

}

This is how your final order will look like. If you are satisfied with that response, simply call another PUT request to
confirm the checkout, which will become a real order and appear in the backend.

Definition

PUT /api/v1/checkouts/complete/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested cart
notes request (optional) Notes that should be attached to the order

Example

To finalize the previously built order, execute the following command:

$ curl http://demo.sylius.com/api/v1/checkouts/complete/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT

Exemplary Response

STATUS: 204 No Content

The order has been placed, from now on you can manage it only via orders endpoint.

Of course the same result can be achieved when the order will be completed with some additional notes:

5.1. The REST API Reference 289

Sylius

Example

To finalize the previously built order (assuming that, the previous example has not been executed), try the following
command:

$ curl http://demo.sylius.com/api/v1/checkouts/complete/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"notes": "Please, call me before delivery"

}
'

Exemplary Response

STATUS: 204 No Content

5.1.7 Countries API

These endpoints will allow you to easily manage countries. Base URI is /api/v1/countries.

Country API response structure

If you request a country via API, you will receive an object with the following fields:

Field Description
id Id of the country
code Unique country identifier

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the country
code Unique country identifier
enabled Information says if the country is enabled (default: false)
provinces Collection of the country’s provinces

Note: Read more about Countries in the component docs.

Creating a Country

To create a new country you will need to call the /api/v1/countries/ endpoint with the POST method.

290 Chapter 5. The REST API Reference

Sylius

Definition

POST /api/v1/countries/

Parameter Parameter type Description
Authorization header Token received during authentication
code request (unique) Country identifier

Example

$ curl http://demo.sylius.com/api/v1/countries/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "PL"

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 2,
"code": "PL",
"provinces": [],
"enabled": false,
"_links": {

"self": {
"href": "\/api\/v1\/countries\/PL"

}
}

}

If you try to create a country without code you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/v1/countries/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

5.1. The REST API Reference 291

Sylius

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"provinces": {},
"enabled": {},
"code": {

"errors": [
"Please enter country ISO code."

]
}

}
}

}

You can also create a country with additional (not required) fields:

Parameter Parameter type Description
enabled request Information says if the country is enabled (default: false)
provinces request Collection of the country’s provinces

Example

$ curl http://demo.sylius.com/api/v1/countries/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code":"PL",
"enabled": true,
"provinces": [

{
"name": "mazowieckie",
"code": "PL-MZ"

}
]

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 4,

(continues on next page)

292 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"code": "PL",
"provinces": [

{
"id": 1,
"code": "PL-MZ",
"name": "mazowieckie",
"_links": {

"self": {
"href": "\/api\/v1\/countries\/PL\/provinces\/PL-MZ"

},
"country": {

"href": "\/api\/v1\/countries\/PL"
}

}
}

],
"enabled": true,
"_links": {

"self": {
"href": "\/api\/v1\/countries\/PL"

}
}

}

Getting a Single Country

To retrieve the details of a country you will need to call the /api/v1/countries/{code} endpoint with the GET
method.

Definition

GET /api/v1/countries/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the requested country

Example

To see the details of the country with code = US use the below method:

$ curl http://demo.sylius.com/api/v1/countries/US \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The US code is just an example. Your value can be different.

5.1. The REST API Reference 293

Sylius

Exemplary Response

STATUS: 200 OK

{
"id": 1,
"code": "US",
"provinces": [],
"enabled": true,
"_links": {

"self": {
"href": "\/api\/v1\/countries\/US"

}
}

}

Collection of Countries

To retrieve a paginated list of countries you will need to call the /api/v1/countries/ endpoint with the GET
method.

Definition

GET /api/v1/countries/

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
paginate query (optional) Number of items to display per page, by default = 10

To see the first page of all countries use the below method:

Example

$ curl http://demo.sylius.com/api/v1/countries/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 2,

(continues on next page)

294 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"_links": {
"self": {

"href": "\/api\/v1\/countries\/?page=1&limit=10"
},
"first": {

"href": "\/api\/v1\/countries\/?page=1&limit=10"
},
"last": {

"href": "\/api\/v1\/countries\/?page=1&limit=10"
}

},
"_embedded": {

"items": [
{

"id": 1,
"code": "US",
"_links": {

"self": {
"href": "\/api\/v1\/countries\/US"

}
}

},
{

"id": 4,
"code": "PL",
"_links": {

"self": {
"href": "\/api\/v1\/countries\/PL"

}
}

}
]

}
}

Deleting a Country

To delete a country you will need to call the /api/v1/countries/{code} endpoint with the DELETE method.

Definition

DELETE /api/v1/countries/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the removed country

Example

5.1. The REST API Reference 295

Sylius

$ curl http://demo.sylius.com/api/v1/countries/PL \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.8 Currencies API

These endpoints will allow you to easily manage currencies. Base URI is /api/v1/currencies.

Currency API response structure

If you request a currency via API, you will receive an object with the following fields:

Field Description
id Id of the currency
code Unique currency identifier

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the currency
code Unique currency identifier
updatedAt Last update date of the currency
createdAt Creation date of the currency

Note: Read more about Currencies in the component docs.

Creating a Currency

To create a new currency you will need to call the /api/v1/currencies/ endpoint with the POST method.

Definition

POST /api/v1/currencies/

Parameter Parameter type Description
Authorization header Token received during authentication
code request (unique) Currency identifier

296 Chapter 5. The REST API Reference

Sylius

Example

$ curl http://demo.sylius.com/api/v1/currencies/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "PLN"

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 4,
"code": "PLN",
"createdAt": "2017-02-14T11:38:40+0100",
"updatedAt": "2017-02-14T11:38:41+0100",
"_links": {

"self": {
"href": "\/api\/v1\/currencies\/PLN"

}
}

}

If you try to create a currency without code you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/v1/currencies/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"code": {

"errors": [
"Please choose currency code."

]

(continues on next page)

5.1. The REST API Reference 297

Sylius

(continued from previous page)

}
}

}
}

Getting a Single Currency

To retrieve the details of a currency you will need to call the /api/v1/currencies/{code} endpoint with the
GET method.

Definition

GET /api/v1/currencies/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the requested currency

Example

To see the details of the currency with code = PLN use the below method:

$ curl http://demo.sylius.com/api/v1/currencies/PLN \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The PLN code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

{
"id": 4,
"code": "PLN",
"createdAt": "2017-02-14T11:38:40+0100",
"updatedAt": "2017-02-14T11:38:41+0100",
"_links": {

"self": {
"href": "\/api\/v1\/currencies\/PLN"

}
}

}

298 Chapter 5. The REST API Reference

Sylius

Collection of Currencies

To retrieve a paginated list of currencies you will need to call the /api/v1/currencies/ endpoint with the GET
method.

Definition

GET /api/v1/currencies/

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
paginate query (optional) Number of items to display per page, by default = 10

To see the first page of all currencies use the below method:

Example

$ curl http://demo.sylius.com/api/v1/currencies/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 3,
"_links": {

"self": {
"href": "\/api\/v1\/currencies\/?page=1&limit=10"

},
"first": {

"href": "\/api\/v1\/currencies\/?page=1&limit=10"
},
"last": {

"href": "\/api\/v1\/currencies\/?page=1&limit=10"
}

},
"_embedded": {

"items": [
{

"id": 3,
"code": "USD",
"_links": {

"self": {
"href": "\/api\/v1\/currencies\/USD"

(continues on next page)

5.1. The REST API Reference 299

Sylius

(continued from previous page)

}
}

},
{

"id": 4,
"code": "PLN",
"_links": {

"self": {
"href": "\/api\/v1\/currencies\/PLN"

}
}

},
{

"id": 5,
"code": "EUR",
"_links": {

"self": {
"href": "\/api\/v1\/currencies\/EUR"

}
}

}
]

}
}

Deleting a Currency

To delete a currency you will need to call the /api/v1/currencies/{code} endpoint with the DELETEmethod.

Definition

DELETE /api/v1/currencies/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the removed currency

Example

$ curl http://demo.sylius.com/api/v1/currencies/PLN \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

300 Chapter 5. The REST API Reference

Sylius

5.1.9 Customers API

These endpoints will allow you to easily manage customers. Base URI is /api/v1/customers. The Customer class is
strongly coupled with the User class. Because of that we recommend these endpoints to manage all related to user
actions.

When you get a collection of resources, “Default” serialization group will be used and the following fields will be
exposed:

Field Description
id Id of customer
user[id] (optional) Id of related user
user[username] (optional) Users username
user[enabled] (optional) Flag set if user is enabled
email Customers email
firstName Customers first name
lastName Customers last name

If you request for a more detailed data, you will receive an object with following fields:

Field Description
id Id of customer
user[id] (optional) Id of related user
user[username] (optional) Users username
user[usernameCanonical] (optional) Canonicalized users username
user[roles] (optional) Array of users roles
user[enabled] (optional) Flag set if user is enabled
email Customers email
emailCanonical Canonicalized customers email
firstName Customers first name
lastName Customers last name
gender Customers gender
birthday Customers birthday
group Customer group code

Note: Read more about Customers and Users.

Creating a Customer

Definition

POST /api/v1/customers/

5.1. The REST API Reference 301

Sylius

Parameter Parameter
type

Description

Authorization header Token received during authentication
email request (unique) Customer’s email
firstName request Customer’s first name
lastName request Customer’s last name
group | request | (optional) Customer group code
gender request Customer’s gender
birthday request (optional) Customer’s birthday
user[plainPassword] request (optional) Users plain password. Required if user account should be created

together with customer
user[authorizationRoles]request (optional) Array of users roles
user[enabled] request (optional) Flag set if user is enabled

Example

$ curl http://demo.sylius.com/api/v1/customers/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"firstName": "John",
"lastName": "Diggle",
"email": "john.diggle@yahoo.com",
"gender": "m",
"user": {

"plainPassword" : "testPassword"
}

}
'

Exemplary Response

STATUS: 201 Created

{
"id":409,
"user":{

"id":405,
"username":"john.diggle@yahoo.com",
"roles":[

"ROLE_USER"
],
"enabled":false

},
"email":"john.diggle@yahoo.com",
"emailCanonical":"john.diggle@yahoo.com",
"firstName":"John",
"lastName":"Diggle",
"gender":"m",

(continues on next page)

302 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"group":{}
}

If you try to create a customer without email or gender, you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/v1/customers/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"firstName": {},
"lastName": {},
"email": {

"errors": [
"Please enter your email."

]
},
"birthday": {},
"gender": {

"errors": [
"Please choose your gender."

]
},
"phoneNumber": {},
"subscribedToNewsletter": {},
"group": {}

}
}

}

Getting a Single Customer

You can request detailed customer information by executing the following request:

Definition

GET /api/v1/customers/{id}

5.1. The REST API Reference 303

Sylius

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested resource

Example

$ curl http://demo.sylius.com/api/v1/customers/399 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"id":399,
"user":{

"id":398,
"username":"cgulgowski@example.com",
"usernameCanonical":"cgulgowski@example.com",
"roles":[

"ROLE_USER"
],
"enabled":false

},
"email":"cgulgowski@example.com",
"emailCanonical":"cgulgowski@example.com",
"firstName":"Levi",
"lastName":"Friesen",
"gender":"u",
"group":{}

}

Collection of Customers

You can retrieve the full customers list by making the following request:

Definition

GET /api/v1/customers/

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
limit query (optional) Number of items to display per page, by default = 10

304 Chapter 5. The REST API Reference

Sylius

Example

$ curl http://demo.sylius.com/api/v1/customers/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page":1,
"limit":10,
"pages":21,
"total":205,
"_links":{

"self":{
"href":"\/api\/customers\/?page=1&limit=10"

},
"first":{

"href":"\/api\/customers\/?page=1&limit=10"
},
"last":{

"href":"\/api\/customers\/?page=21&limit=10"
},
"next":{

"href":"\/api\/customers\/?page=2&limit=10"
}

},
"_embedded":{

"items":[
{

"id":407,
"email":"random@gmail.com",
"firstName":"Random",
"lastName":"Doe"

},
{

"id":406,
"email":"customer@email.com",
"firstName":"Alexanne",
"lastName":"Blick"

},
{

"id":405,
"user":{

"id":404,
"username":"gaylord.bins@example.com",
"enabled":true

},
"email":"gaylord.bins@example.com",
"firstName":"Dereck",
"lastName":"McDermott"

},
{

(continues on next page)

5.1. The REST API Reference 305

Sylius

(continued from previous page)

"id":404,
"user":{

"id":403,
"username":"lehner.gerhard@example.com",
"enabled":false

},
"email":"lehner.gerhard@example.com",
"firstName":"Benton",
"lastName":"Satterfield"

},
{

"id":403,
"user":{

"id":402,
"username":"raheem.ratke@example.com",
"enabled":false

},
"email":"raheem.ratke@example.com",
"firstName":"Rusty",
"lastName":"Jerde"

},
{

"id":402,
"user":{

"id":401,
"username":"litzy.morissette@example.com",
"enabled":false

},
"email":"litzy.morissette@example.com",
"firstName":"Omer",
"lastName":"Schaden"

},
{

"id":401,
"user":{

"id":400,
"username":"bbeer@example.com",
"enabled":true

},
"email":"bbeer@example.com",
"firstName":"Willard",
"lastName":"Hand"

},
{

"id":400,
"user":{

"id":399,
"username":"qtrantow@example.com",
"enabled":false

},
"email":"qtrantow@example.com",
"firstName":"Caterina",
"lastName":"Koelpin"

},
{

"id":399,
"user":{

(continues on next page)

306 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"id":398,
"username":"cgulgowski@example.com",
"enabled":false

},
"email":"cgulgowski@example.com",
"firstName":"Levi",
"lastName":"Friesen"

}
]

}
}

Updating a Customer

You can request full or partial update of resource. For full customer update, you should use PUT method.

Definition

PUT /api/v1/customers/{id}

Parameter Parameter
type

Description

Authorization header Token received during authentication
id url attribute Id of the requested resource
email request (unique) Customers email
firstName request Customers first name
lastName request Customers last name
group request (optional) Customer group code
gender request Customers gender
birthday request (optional) Customers birthday
user[plainPassword] request (optional) Users plain password. Required if any of user fields is

defined
user[authorizationRoles] request (optional) Array of users roles.
user[enabled] request (optional) Flag set if user is enabled.

Example

$ curl http://demo.sylius.com/api/v1/customers/399 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"firstName": "John",
"lastName": "Diggle",
"email": "john.diggle@example.com",
"gender": "m"

}
'

5.1. The REST API Reference 307

Sylius

Exemplary Response

STATUS: 204 No Content

If you try to perform full customer update without all required fields specified, you will receive a 400 error.

Example

$ curl http://demo.sylius.com/api/v1/customers/399 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"firstName": {},
"lastName": {},
"email": {

"errors": [
"Please enter your email."

]
},
"birthday": {},
"gender": {

"errors": [
"Please choose your gender."

]
},
"phoneNumber": {},
"subscribedToNewsletter": {},
"group": {}

}
}

}

In order to perform a partial update, you should use a PATCH method.

Definition

PATCH /api/v1/customers/{id}

308 Chapter 5. The REST API Reference

Sylius

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested resource
email request (optional) (unique) Customers email
firstName request (optional) Customers first name
lastName request (optional) Customers last name
group request (optional) Customer group code
gender request (optional) Customers gender
birthday request (optional) Customers birthday
user[plainPassword] request (optional) Users plain password.
user[authorizationRoles] request (optional) Array of users roles.
user[enabled] request (optional) Flag set if user is enabled.

Example

$ curl http://demo.sylius.com/api/v1/customers/399 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PATCH \
--data '{"firstName": "Joe"}'

Exemplary Response

STATUS: 204 No Content

Deleting a Customer

Definition

DELETE /api/v1/customers/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested resource

Example

$ curl http://demo.sylius.com/api/v1/customers/399 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

5.1. The REST API Reference 309

Sylius

Exemplary Response

STATUS: 204 No Content

Collection of all customer orders

To browse all orders for specific customer, you can do the following call:

Definition

GET /api/v1/customers/{id}/orders/

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
paginate query (optional) Number of items to display per page, by default = 10

Example

$ curl http://demo.sylius.com/api/v1/customers/7/orders/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page":1,
"limit":10,
"pages":1,
"total":1,
"_links":{

"self":{
"href":"\/api\/v1\/customers\/2\/orders\/?page=1&limit=10"

},
"first":{

"href":"\/api\/v1\/customers\/2\/orders\/?page=1&limit=10"
},
"last":{

"href":"\/api\/v1\/customers\/2\/orders\/?page=1&limit=10"
}

},
"_embedded":{

"items":[
{

"id":2,
"checkoutCompletedAt":"2017-02-23T14:53:11+0100",

(continues on next page)

310 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"number":"000000002",
"items":[

{
"id":4,
"quantity":2,
"unitPrice":101,
"total":123,
"units":[

{
"id":11,
"adjustments":[

{
"id":12,
"type":"order_promotion",
"label":"Christmas",
"amount":-40

}
],
"adjustmentsTotal":-40

},
{

"id":12,
"adjustments":[

{
"id":13,
"type":"order_promotion",
"label":"Christmas",
"amount":-39

}
],
"adjustmentsTotal":-39

}
],
"unitsTotal":123,
"adjustments":[

],
"adjustmentsTotal":0,
"variant":{

"id":181,
"code":"MEDIUM_MUG_CUP",
"optionValues":[

{
"code":"t_shirt_color_red",
"translations":{

"en_US":{
"locale":"en_US",
"id":7,
"value":"Red"

}
}

},
{

"code":"t_shirt_size_s",
"translations":{

"en_US":{
"locale":"en_US",

(continues on next page)

5.1. The REST API Reference 311

Sylius

(continued from previous page)

"id":10,
"value":"S"

}
}

}
],
"position":0,
"translations":{

"en_US":{
"locale":"en_US",
"id":181,
"name":"tempore"

}
},
"onHold":0,
"onHand":6,
"tracked":false,
"channelPricings":{

"US_WEB": {
"channelCode": "US_WEB",
"price":101

}
},
"_links":{

"self":{
"href":"\/api\/v1\/products\/MUG\/variants\/

→˓MEDIUM_MUG_CUP"
},
"product":{

"href":"\/api\/v1\/products\/MUG"
}

}
},
"_links":{

"order":{
"href":"\/api\/v1\/orders\/2"

},
"product":{

"href":"\/api\/v1\/products\/MUG"
},
"variant":{

"href":"\/api\/v1\/products\/MUG\/variants\/MEDIUM_
→˓MUG_CUP"

}
}

},
{

"id":5,
"quantity":4,
"unitPrice":840,
"total":2050,
"units":[

{
"id":13,
"adjustments":[

{
"id":14,

(continues on next page)

312 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"type":"order_promotion",
"label":"Christmas",
"amount":-328

}
],
"adjustmentsTotal":-328

},
{

"id":14,
"adjustments":[

{
"id":15,
"type":"order_promotion",
"label":"Christmas",
"amount":-328

}
],
"adjustmentsTotal":-328

},
{

"id":15,
"adjustments":[

{
"id":16,
"type":"order_promotion",
"label":"Christmas",
"amount":-327

}
],
"adjustmentsTotal":-327

},
{

"id":16,
"adjustments":[

{
"id":17,
"type":"order_promotion",
"label":"Christmas",
"amount":-327

}
],
"adjustmentsTotal":-327

}
],
"unitsTotal":2050,
"adjustments":[

],
"adjustmentsTotal":0,
"variant":{

"id":97,
"code":"cd843634-6c85-3be0-9c84-7ce7786a394d-variant-0",
"optionValues":[

],
"position":0,
"translations":{

(continues on next page)

5.1. The REST API Reference 313

Sylius

(continued from previous page)

"en_US":{
"locale":"en_US",
"id":97,
"name":"sequi"

}
},
"onHold":0,
"onHand":5,
"tracked":false,
"channelPricings":{

"US_WEB": {
"channelCode": "US_WEB",
"price":840

}
},
"_links":{

"self":{
"href":"\/api\/v1\/products\/cd843634-6c85-3be0-

→˓9c84-7ce7786a394d\/variants\/cd843634-6c85-3be0-9c84-7ce7786a394d-variant-0"
},
"product":{

"href":"\/api\/v1\/products\/cd843634-6c85-3be0-
→˓9c84-7ce7786a394d"

}
}

},
"_links":{

"order":{
"href":"\/api\/v1\/orders\/2"

},
"product":{

"href":"\/api\/v1\/products\/cd843634-6c85-3be0-9c84-
→˓7ce7786a394d"

},
"variant":{

"href":"\/api\/v1\/products\/cd843634-6c85-3be0-9c84-
→˓7ce7786a394d\/variants\/cd843634-6c85-3be0-9c84-7ce7786a394d-variant-0"

}
}

},
{

"id":6,
"quantity":4,
"unitPrice":660,
"total":1610,
"units":[

{
"id":17,
"adjustments":[

{
"id":18,
"type":"order_promotion",
"label":"Christmas",
"amount":-258

}
],
"adjustmentsTotal":-258

(continues on next page)

314 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

},
{

"id":18,
"adjustments":[

{
"id":19,
"type":"order_promotion",
"label":"Christmas",
"amount":-258

}
],
"adjustmentsTotal":-258

},
{

"id":19,
"adjustments":[

{
"id":20,
"type":"order_promotion",
"label":"Christmas",
"amount":-257

}
],
"adjustmentsTotal":-257

},
{

"id":20,
"adjustments":[

{
"id":21,
"type":"order_promotion",
"label":"Christmas",
"amount":-257

}
],
"adjustmentsTotal":-257

}
],
"unitsTotal":1610,
"adjustments":[

],
"adjustmentsTotal":0,
"variant":{

"id":45,
"code":"c38fef5d-ddf9-31e2-8e05-71618605f381-variant-2",
"optionValues":[

{
"code":"mug_type_monster",
"translations":{

"en_US":{
"locale":"en_US",
"id":3,
"value":"Monster mug"

}
}

}
(continues on next page)

5.1. The REST API Reference 315

Sylius

(continued from previous page)

],
"position":2,
"translations":{

"en_US":{
"locale":"en_US",
"id":45,
"name":"quod"

}
},
"onHold":0,
"onHand":7,
"tracked":false,
"channelPricings":{

"US_WEB": {
"channelCode":"US_WEB"
"price":660

}
},
"_links":{

"self":{
"href":"\/api\/v1\/products\/c38fef5d-ddf9-31e2-

→˓8e05-71618605f381\/variants\/c38fef5d-ddf9-31e2-8e05-71618605f381-variant-2"
},
"product":{

"href":"\/api\/v1\/products\/c38fef5d-ddf9-31e2-
→˓8e05-71618605f381"

}
}

},
"_links":{

"order":{
"href":"\/api\/v1\/orders\/2"

},
"product":{

"href":"\/api\/v1\/products\/c38fef5d-ddf9-31e2-8e05-
→˓71618605f381"

},
"variant":{

"href":"\/api\/v1\/products\/c38fef5d-ddf9-31e2-8e05-
→˓71618605f381\/variants\/c38fef5d-ddf9-31e2-8e05-71618605f381-variant-2"

}
}

},
{

"id":7,
"quantity":1,
"unitPrice":430,
"total":262,
"units":[

{
"id":21,
"adjustments":[

{
"id":22,
"type":"order_promotion",
"label":"Christmas",
"amount":-168

(continues on next page)

316 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

}
],
"adjustmentsTotal":-168

}
],
"unitsTotal":262,
"adjustments":[

],
"adjustmentsTotal":0,
"variant":{

"id":20,
"code":"4d4ba2e2-7138-3256-a88f-0caa5dc3bb81-variant-1",
"optionValues":[

{
"code":"mug_type_double",
"translations":{

"en_US":{
"locale":"en_US",
"id":2,
"value":"Double mug"

}
}

}
],
"position":1,
"translations":{

"en_US":{
"locale":"en_US",
"id":20,
"name":"nisi"

}
},
"onHold":0,
"onHand":2,
"tracked":false,
"channelPricings":{

"US_WEB": {
"channelCode":"US_WEB",
"price":430

}
},
"_links":{

"self":{
"href":"\/api\/v1\/products\/4d4ba2e2-7138-3256-

→˓a88f-0caa5dc3bb81\/variants\/4d4ba2e2-7138-3256-a88f-0caa5dc3bb81-variant-1"
},
"product":{

"href":"\/api\/v1\/products\/4d4ba2e2-7138-3256-
→˓a88f-0caa5dc3bb81"

}
}

},
"_links":{

"order":{
"href":"\/api\/v1\/orders\/2"

},
(continues on next page)

5.1. The REST API Reference 317

Sylius

(continued from previous page)

"product":{
"href":"\/api\/v1\/products\/4d4ba2e2-7138-3256-a88f-

→˓0caa5dc3bb81"
},
"variant":{

"href":"\/api\/v1\/products\/4d4ba2e2-7138-3256-a88f-
→˓0caa5dc3bb81\/variants\/4d4ba2e2-7138-3256-a88f-0caa5dc3bb81-variant-1"

}
}

},
{

"id":8,
"quantity":4,
"unitPrice":665,
"total":1623,
"units":[

{
"id":22,
"adjustments":[

{
"id":23,
"type":"order_promotion",
"label":"Christmas",
"amount":-260

}
],
"adjustmentsTotal":-260

},
{

"id":23,
"adjustments":[

{
"id":24,
"type":"order_promotion",
"label":"Christmas",
"amount":-259

}
],
"adjustmentsTotal":-259

},
{

"id":24,
"adjustments":[

{
"id":25,
"type":"order_promotion",
"label":"Christmas",
"amount":-259

}
],
"adjustmentsTotal":-259

},
{

"id":25,
"adjustments":[

{
"id":26,

(continues on next page)

318 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"type":"order_promotion",
"label":"Christmas",
"amount":-259

}
],
"adjustmentsTotal":-259

}
],
"unitsTotal":1623,
"adjustments":[

],
"adjustmentsTotal":0,
"variant":{

"id":91,
"code":"6864f798-e0e5-339d-91c9-e6036befa414-variant-0",
"optionValues":[

],
"position":0,
"translations":{

"en_US":{
"locale":"en_US",
"id":91,
"name":"maiores"

}
},
"onHold":0,
"onHand":7,
"tracked":false,
"channelPricings":{

"US_WEB": {
"channelCode":"US_WEB",
"price":665

}
},
"_links":{

"self":{
"href":"\/api\/v1\/products\/6864f798-e0e5-339d-

→˓91c9-e6036befa414\/variants\/6864f798-e0e5-339d-91c9-e6036befa414-variant-0"
},
"product":{

"href":"\/api\/v1\/products\/6864f798-e0e5-339d-
→˓91c9-e6036befa414"

}
}

},
"_links":{

"order":{
"href":"\/api\/v1\/orders\/2"

},
"product":{

"href":"\/api\/v1\/products\/6864f798-e0e5-339d-91c9-
→˓e6036befa414"

},
"variant":{

"href":"\/api\/v1\/products\/6864f798-e0e5-339d-91c9-
→˓e6036befa414\/variants\/6864f798-e0e5-339d-91c9-e6036befa414-variant-0"(continues on next page)

5.1. The REST API Reference 319

Sylius

(continued from previous page)

}
}

}
],
"itemsTotal":5668,
"adjustments":[

{
"id":27,
"type":"shipping",
"label":"FedEx",
"amount":1530

}
],
"adjustmentsTotal":1530,
"total":7198,
"state":"new",
"customer":{

"id":2,
"email":"metz.ted@beer.com",
"emailCanonical":"metz.ted@beer.com",
"firstName":"Dangelo",
"lastName":"Graham",
"gender":"u",
"user":{

"id":2,
"username":"metz.ted@beer.com",
"usernameCanonical":"metz.ted@beer.com",
"roles":[

"ROLE_USER"
],
"enabled":true

},
"_links":{

"self":{
"href":"\/api\/v1\/customers\/2"

}
}

},
"channel":{

"id":1,
"code":"US_WEB",
"name":"US Web Store",
"hostname":"localhost",
"color":"Plum",
"createdAt":"2017-02-23T14:53:04+0100",
"updatedAt":"2017-02-23T14:53:04+0100",
"enabled":true,
"taxCalculationStrategy":"order_items_based",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/US_WEB"

}
}

},
"shippingAddress":{

"id":4,
"firstName":"Kay",

(continues on next page)

320 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"lastName":"Abbott",
"countryCode":"US",
"street":"Walsh Ford",
"city":"New Devante",
"postcode":"39325"

},
"billingAddress":{

"id":5,
"firstName":"Kay",
"lastName":"Abbott",
"countryCode":"US",
"street":"Walsh Ford",
"city":"New Devante",
"postcode":"39325"

},
"payments":[

{
"id":2,
"method":{

"id":1,
"code":"cash_on_delivery",
"channels":[

{
"id":1,
"code":"US_WEB",
"name":"US Web Store",
"hostname":"localhost",
"color":"Plum",
"createdAt":"2017-02-23T14:53:04+0100",
"updatedAt":"2017-02-23T14:53:04+0100",
"enabled":true,
"taxCalculationStrategy":"order_items_based",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/US_WEB"

}
}

}
],
"_links":{

"self":{
"href":"\/api\/v1\/payment-methods\/cash_on_

→˓delivery"
}

}
},
"amount":7198,
"state":"new",
"_links":{

"self":{
"href":"\/api\/v1\/payments\/2"

},
"payment-method":{

"href":"\/api\/v1\/payment-methods\/cash_on_delivery"
},
"order":{

"href":"\/api\/v1\/orders\/2"
(continues on next page)

5.1. The REST API Reference 321

Sylius

(continued from previous page)

}
}

}
],
"shipments":[

{
"id":2,
"state":"ready",
"method":{

"id":3,
"code":"fedex",
"enabled":true,
"_links":{

"self":{
"href":"\/api\/v1\/shipping-methods\/fedex"

},
"zone":{

"href":"\/api\/v1\/zones\/US"
}

}
},
"_links":{

"self":{
"href":"\/api\/v1\/shipments\/2"

},
"method":{

"href":"\/api\/v1\/shipping-methods\/fedex"
},
"order":{

"href":"\/api\/v1\/orders\/2"
}

}
}

],
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"completed"

}
]

}
}

5.1.10 Exchange Rates API

These endpoints will allow you to easily manage exchange rates. Base URI is /api/v1/exchange-rates.

Exchange Rate API response structure

If you request an exchange rate via API, you will receive an object with the following fields:

322 Chapter 5. The REST API Reference

Sylius

Field Description
id Id of the exchange rate
ratio Exchange rate’s ratio
sourceCurrency The currency object serialized with the default data
targetCurrency The currency object serialized with the default data
updatedAt Last update date of the exchange rate

If you request for more detailed data, you will receive the default data with the additional field:

Field Description
createdAt Creation date date of the exchange rate

Creating an Exchange Rate

To create a new exchange rate you will need to call the /api/v1/exchange-rates/ endpoint with the POST
method.

Definition

POST /api/v1/exchange-rates/

Parameter Parameter type Description
Authorization header Token received during authentication
ratio request Ratio of the Exchange Rate
sourceCurrency request The source currency
targetCurrency request The target currency

Example

$ curl http://demo.sylius.com/api/v1/exchange-rates/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"ratio": "0,8515706",
"sourceCurrency": "EUR",
"targetCurrency": "GBP"

}
'

Tip: Remember that before you will be able to add a new exchange rate, both currencies have to be already defined.

5.1. The REST API Reference 323

Sylius

Exemplary Response

STATUS: 201 CREATED

{
"id":1,
"ratio":0.85157,
"sourceCurrency":{

"id":2,
"code":"EUR",
"_links":{

"self":{
"href":"\/api\/v1\/currencies\/EUR"

}
}

},
"targetCurrency":{

"id":3,
"code":"GBP",
"_links":{

"self":{
"href":"\/api\/v1\/currencies\/GBP"

}
}

},
"updatedAt":"2017-02-23T15:00:53+0100",
"_links":{

"self":{
"href":"\/api\/v1\/exchange-rates\/EUR-GBP"

}
}

}

If you try to create an exchange rate without required fields you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/v1/exchange-rates/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code":400,
"message":"Validation Failed",
"errors":{

"errors":[
"The source and target currencies must differ."

(continues on next page)

324 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

],
"children":{

"ratio":{
"errors":[

"Please enter exchange rate ratio."
]

},
"sourceCurrency":{

"errors":[
"This value is not valid."

]
},
"targetCurrency":{

"errors":[
"This value is not valid."

]
}

}
}

}

Getting a Single Exchange Rate

To retrieve the details of an exchange rate you will need to call the /api/v1/exchange-rates/
{firstCurrencyCode}-{secondCurrencyCode} endpoint with the GET method.

Definition

GET /api/v1/exchange-rates/{firstCurrencyCode}-{secondCurrencyCode}

Parameter Parameter type Description
Authorization header Token received during authentication
firstCurrencyCode url attribute First currency code
secondCurrencyCode url attribute Second currency code

Example

To see the details of the exchange rate between Euro (code = EUR) and British Pound (code = GBP)
use the below method:

$ curl http://demo.sylius.com/api/v1/exchange-rates/EUR-GBP \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The EUR and GBP codes are just an example.

5.1. The REST API Reference 325

Sylius

Exemplary Response

STATUS: 200 OK

{
"id":1,
"ratio":0.85157,
"sourceCurrency":{

"id":2,
"code":"EUR",
"_links":{

"self":{
"href":"\/api\/v1\/currencies\/EUR"

}
}

},
"targetCurrency":{

"id":3,
"code":"GBP",
"_links":{

"self":{
"href":"\/api\/v1\/currencies\/GBP"

}
}

},
"updatedAt":"2017-02-23T15:00:53+0100",
"_links":{

"self":{
"href":"\/api\/v1\/exchange-rates\/EUR-GBP"

}
}

}

Warning: The order of currencies in a request is not important. It doesn’t matter if you will request the exchange
rate for EUR-GBP or GBP-EUR the response will always be the same (including source and target currencies).

Collection of Currencies

To retrieve a paginated list of exchange rates you will need to call the /api/v1/exchange-rates/ endpoint with
the GET method.

Definition

GET /api/v1/exchange-rates/

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
paginate query (optional) Number of items to display per page, by default = 10

To see the first page of all exchange rates use the below method:

326 Chapter 5. The REST API Reference

Sylius

Example

$ curl http://demo.sylius.com/api/v1/exchange-rates/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page":1,
"limit":10,
"pages":1,
"total":1,
"_links":{

"self":{
"href":"\/api\/v1\/exchange-rates\/?page=1&limit=10"

},
"first":{

"href":"\/api\/v1\/exchange-rates\/?page=1&limit=10"
},
"last":{

"href":"\/api\/v1\/exchange-rates\/?page=1&limit=10"
}

},
"_embedded":{

"items":[
{

"id":1,
"ratio":0.85157,
"sourceCurrency":{

"id":2,
"code":"EUR",
"_links":{

"self":{
"href":"\/api\/v1\/currencies\/EUR"

}
}

},
"targetCurrency":{

"id":3,
"code":"GBP",
"_links":{

"self":{
"href":"\/api\/v1\/currencies\/GBP"

}
}

},
"updatedAt":"2017-02-23T15:00:53+0100",
"_links":{

"self":{
"href":"\/api\/v1\/exchange-rates\/EUR-GBP"

}
}

(continues on next page)

5.1. The REST API Reference 327

Sylius

(continued from previous page)

}
]

}
}

Updating an Exchange Rate

To update an exchange rate you will need to call the /api/v1/exchange-rates/
firstCurrencyCode-secondCurrencyCode endpoint with the PUT method.

Definition

PUT /api/v1/exchange-rates/{firstCurrencyCode}-{secondCurrencyCode}

Parameter Parameter type Description
Authorization header Token received during authentication
firstCurrencyCode url attribute First currency code
secondCurrencyCode url attribute Second currency code
ratio request Ratio of the Exchange Rate

Example

$ curl http://demo.sylius.com/api/v1/exchange-rates/EUR-GBP \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"ratio": "0,9515706"

}
'

Exemplary Response

STATUS: 204 No Content

If you try to update an exchange rate without the required fields you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/v1/exchange-rates/EUR-GBP \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT

328 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 400 Bad Request

{
"code":400,
"message":"Validation Failed",
"errors":{

"children":{
"ratio":{

"errors":[
"Please enter exchange rate ratio."

]
},
"sourceCurrency":{

},
"targetCurrency":{

}
}

}
}

Deleting an Exchange Rate

To delete an exchange rate you will need to call the /api/v1/exchange-rates/
firstCurrencyCode-secondCurrencyCode endpoint with the DELETE method.

Definition

DELETE /api/v1/exchange-rates/{firstCurrencyCode}-{secondCurrencyCode}

Parameter Parameter type Description
Authorization header Token received during authentication
firstCurrencyCode url attribute First currency code
secondCurrencyCode url attribute Second currency code

Example

$ curl http://demo.sylius.com/api/v1/exchange-rates/EUR-GBP \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

5.1. The REST API Reference 329

Sylius

STATUS: 204 No Content

5.1.11 Locales API

These endpoints will allow you to easily manage locales. Base URI is /api/v1/locales.

Locale API response structure

If you request a locale via API, you will receive an object with the following fields:

Field Description
id Id of the locale
code Unique locale identifier

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the locale
code Unique locale identifier
updatedAt Last update date of the locale
createdAt Creation date of the locale

Note: Read more about Locales in the component docs.

Creating a Locale

To create a new locale you will need to call the /api/v1/locales/ endpoint with the POST method.

Definition

POST /api/v1/locales/

Parameter Parameter type Description
Authorization header Token received during authentication
code request (unique) Locale identifier

Example

$ curl http://demo.sylius.com/api/v1/locales/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

(continues on next page)

330 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

{
"code": "pl"

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 4,
"code": "pl",
"createdAt": "2017-02-14T12:49:38+0100",
"updatedAt": "2017-02-14T12:49:39+0100",
"_links": {

"self": {
"href": "\/api\/v1\/locales\/pl"

}
}

}

If you try to create a locale without code you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/v1/locales/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"code": {

"errors": [
"Please enter locale code."

]
}

}
}

}

5.1. The REST API Reference 331

Sylius

Getting a Single Locale

To retrieve the details of a locale you will need to call the /api/v1/locales/code endpoint with the GETmethod.

Definition

GET /api/v1/locales/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the requested locale

Example

To see the details of the locale with code = pl use the below method:

$ curl http://demo.sylius.com/api/v1/locales/pl \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The pl code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

{
"id": 4,
"code": "pl",
"createdAt": "2017-02-14T12:49:38+0100",
"updatedAt": "2017-02-14T12:49:39+0100",
"_links": {

"self": {
"href": "\/api\/v1\/locales\/pl"

}
}

}

Collection of Locales

To retrieve a paginated list of locales you will need to call the /api/v1/locales/ endpoint with the GET method.

Definition

GET /api/v1/locales/

332 Chapter 5. The REST API Reference

Sylius

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
paginate query (optional) Number of items to display per page, by default = 10

To see the first page of all locales use the below method:

Example

$ curl http://demo.sylius.com/api/v1/locales/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 3,
"_links": {

"self": {
"href": "\/api\/v1\/locales\/?page=1&limit=10"

},
"first": {

"href": "\/api\/v1\/locales\/?page=1&limit=10"
},
"last": {

"href": "\/api\/v1\/locales\/?page=1&limit=10"
}

},
"_embedded": {

"items": [
{

"id": 2,
"code": "en_US",
"_links": {

"self": {
"href": "\/api\/v1\/locales\/en_US"

}
}

},
{

"id": 3,
"code": "af",
"_links": {

"self": {
"href": "\/api\/v1\/locales\/af"

}
}

(continues on next page)

5.1. The REST API Reference 333

Sylius

(continued from previous page)

},
{

"id": 4,
"code": "pl",
"_links": {

"self": {
"href": "\/api\/v1\/locales\/pl"

}
}

}
]

}
}

Deleting a Locale

To delete a locale you will need to call the /api/v1/locales/code endpoint with the DELETE method.

Definition

DELETE /api/v1/locales/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the removed locale

Example

$ curl http://demo.sylius.com/api/v1/locales/pl \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.12 Orders API

Sylius orders API endpoint is /api/v1/orders.

If you request an order via API, you will receive an object with the following fields:

334 Chapter 5. The REST API Reference

Sylius

Field Description
id Id of the order
items List of items related to the order
itemsTotal Sum of all items prices
adjustments List of adjustments related to the order
adjustmentsTotal Sum of all order adjustments
total Sum of items total and adjustments total
customer Customer detailed serialization for order
channel Default channel serialization
currencyCode Currency of the order
checkoutState State of the checkout process
state State of the order
checkoutCompletedAt Date when the checkout has been completed
number Serial number of the order
shippingAddress Detailed address serialization
billingAddress Detailed address serialization
shipments Detailed serialization of all related shipments
payments Detailed serialization of all related payments

Orders endpoint gives an access point to finalized carts, so to the orders that have been placed. At this moment only
certain actions are allowed:

Action Description
Show Presenting of the order
Cancelling Cancelling of the order
Shipping Shipping of the order
Completing the payment Complete the order’s payment

Show Action

You can request detailed order information by executing the following request:

Definition

GET /api/v1/orders/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested order

Example

$ curl http://demo.sylius.com/api/v1/orders/21 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

5.1. The REST API Reference 335

Sylius

Note: The value 21 was taken from previous responses, where we managed the cart and proceed the checkout. Your
value can be different. If you need more information about Cart API please, check this article.

Exemplary Response

STATUS: 200 OK

{
"id":21,
"checkoutCompletedAt":"2017-02-15T13:31:33+0100",
"number":"000000021",
"items":[

{
"id":74,
"quantity":1,
"unitPrice":100000,
"total":100000,
"units":[

{
"id":228,
"adjustments":[

],
"adjustmentsTotal":0,
"_links":{

"order":{
"href":"\/api\/v1\/orders\/21"

}
}

}
],
"unitsTotal":100000,
"adjustments":[

],
"adjustmentsTotal":0,
"variant":{

"id":331,
"code":"MEDIUM_MUG_CUP",
"optionValues":[

{
"name":"Mug type",
"code":"mug_type_medium"

}
],
"position":2,
"translations":{

"en_US":{
"locale":"en_US",
"id":331,
"name":"Medium Mug"

}
},
"version": 1,

(continues on next page)

336 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"onHold":0,
"onHand":10,
"tracked":false,
"channelPricings":{

"US_WEB":{
"channelCode":"US_WEB",
"price":100000

}
},
"_links":{

"self":{
"href":"\/api\/v1\/products\/5\/variants\/331"

},
"product":{

"href":"\/api\/v1\/products\/5"
}

}
},
"_links":{

"product":{
"href":"\/api\/v1\/products\/5"

},
"variant":{

"href":"\/api\/v1\/products\/5\/variants\/331"
}

}
}

],
"itemsTotal":100000,
"adjustments":[

{
"id":252,
"type":"shipping",
"label":"DHL Express",
"amount":3549

}
],
"adjustmentsTotal":3549,
"total":103549,
"state":"new",
"customer":{

"id":1,
"email":"shop@example.com",
"emailCanonical":"shop@example.com",
"firstName":"John",
"lastName":"Doe",
"gender":"u",
"user":{

"id":1,
"username":"shop@example.com",
"usernameCanonical":"shop@example.com",
"roles":[

"ROLE_USER"
],
"enabled":true

},
"_links":{

(continues on next page)

5.1. The REST API Reference 337

Sylius

(continued from previous page)

"self":{
"href":"\/api\/v1\/customers\/1"

}
}

},
"channel":{

"id":1,
"code":"US_WEB",
"name":"US Web Store",
"hostname":"localhost",
"color":"MediumPurple",
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"enabled":true,
"taxCalculationStrategy":"order_items_based",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/1"

}
}

},
"shippingAddress":{

"id":71,
"firstName":"Frederick D.",
"lastName":"Gregory",
"countryCode":"US",
"street":"300 E St SW",
"city":"\u2019Washington",
"postcode":"DC 20546",
"createdAt":"2017-02-14T11:55:40+0100",
"updatedAt":"2017-02-14T17:00:17+0100"

},
"billingAddress":{

"id":72,
"firstName":"Frederick D.",
"lastName":"Gregory",
"countryCode":"US",
"street":"300 E St SW",
"city":"\u2019Washington",
"postcode":"DC 20546",
"createdAt":"2017-02-14T11:55:40+0100",
"updatedAt":"2017-02-14T17:00:17+0100"

},
"payments":[

{
"id":21,
"method":{

"id":2,
"code":"bank_transfer",
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"channels":[

{
"id":1,
"code":"US_WEB",
"name":"US Web Store",
"hostname":"localhost",

(continues on next page)

338 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"color":"MediumPurple",
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"enabled":true,
"taxCalculationStrategy":"order_items_based",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/1"

}
}

}
],
"_links":{

"self":{
"href":"\/api\/v1\/payment-methods\/bank_transfer"

}
}

},
"amount":103549,
"state":"new",
"createdAt":"2017-02-14T11:53:41+0100",
"updatedAt":"2017-02-15T13:31:33+0100",
"_links":{

"self":{
"href":"\/api\/v1\/payments\/21"

},
"payment-method":{

"href":"\/api\/v1\/payment-methods\/bank_transfer"
},
"order":{

"href":"\/api\/v1\/orders\/21"
}

}
}

],
"shipments":[

{
"id":21,
"state":"ready",
"method":{

"id":2,
"code":"dhl_express",
"category_requirement":1,
"calculator":"flat_rate",
"configuration":{

"US_WEB":{
"amount":3549

}
},
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"enabled":true,
"_links":{

"self":{
"href":"\/api\/v1\/shipping-methods\/dhl_express"

},
"zone":{

(continues on next page)

5.1. The REST API Reference 339

Sylius

(continued from previous page)

"href":"\/api\/v1\/zones\/US"
}

}
},
"createdAt":"2017-02-14T11:53:41+0100",
"updatedAt":"2017-02-15T13:31:33+0100",
"_links":{

"self":{
"href":"\/api\/v1\/shipments\/21"

},
"method":{

"href":"\/api\/v1\/shipping-methods\/dhl_express"
},
"order":{

"href":"\/api\/v1\/orders\/21"
}

}
}

],
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"completed"

}

Cancel Action

You can cancel an already placed order by executing the following request:

Definition

PUT /api/v1/orders/{id}/cancel

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested order

Example

$ curl http://demo.sylius.com/api/v1/orders/21/cancel \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X PUT

Exemplary Response

STATUS: 204 NO CONTENT

340 Chapter 5. The REST API Reference

Sylius

Ship Action

You can ship an already placed order by executing the following request:

Definition

PUT /api/v1/orders/{orderId}/shipments/{id}/ship

Parameter Parameter type Description
Authorization header Token received during authentication
orderId url attribute Id of the requested order
id url attribute Id of the shipped shipment
tracking request (optional) The tracking code of the shipment

Example

$ curl http://demo.sylius.com/api/v1/orders/21/shipments/21/ship \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X PUT

Exemplary Response

STATUS: 204 No Content

Note: It is important to emphasise that in this example the shipment id is the same value as for the order, but it is a
coincidence rather than a rule.

Complete The Payment Action

You can complete the payment of an already placed order by executing the following request:

Definition

PUT /api/v1/orders/{orderId}/payments/{id}/complete

Parameter Parameter type Description
Authorization header Token received during authentication
orderId url attribute Id of the requested order
id url attribute Id of payment to complete

5.1. The REST API Reference 341

Sylius

Example

$ curl http://demo.sylius.com/api/v1/orders/21/payments/21/complete \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X PUT

Exemplary Response

STATUS: 204 No content

5.1.13 Payment Methods API

These endpoints will allow you to easily manage payment methods. Base URI is /api/v1/payment-methods.

Payment Method API response structure

If you request a payment method via API, you will receive an object with the following fields:

Field Description
id Unique id of the payment method
code Unique code of the payment method
name The payment method’s name
createdAt Date of creation
updatedAt Date of the last update

Note: Read more about Payment Methods in the component docs.

Getting a Single Payment Method

To retrieve the details of a payment method you will need to call the /api/v1/payment-methods/code end-
point with the GET method.

Definition

GET /api/v1/payment-methods/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the requested payment method

342 Chapter 5. The REST API Reference

Sylius

Example

To see the details of the payment method with code = cash_on_delivery use the below method:

$ curl http://demo.sylius.com/api/v1/payment-methods/cash_on_delivery \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The cash_on_delivery code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

{
"id": 1,
"code": "cash_on_delivery",
"position": 0,
"createdAt": "2017-02-24T16:14:03+0100",
"updatedAt": "2017-02-24T16:14:03+0100",
"enabled": true,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"name": "Cash on delivery",
"description": "Rerum expedita sit aut praesentium soluta sint aperiam."

}
},
"channels": [

{
"id": 1,
"code": "US_WEB",
"name": "US Web Store",
"hostname": "localhost",
"color": "SlateBlue",
"createdAt": "2017-02-24T16:14:03+0100",
"updatedAt": "2017-02-24T16:14:03+0100",
"enabled": true,
"taxCalculationStrategy": "order_items_based",
"_links": {

"self": {
"href": "\/api\/v1\/channels\/US_WEB"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/payment-methods\/cash_on_delivery"

}
}

}

5.1. The REST API Reference 343

Sylius

5.1.14 Payments API

These endpoints will allow you to easily present payments. Base URI is /api/v1/payments.

Payment API response structure

If you request a payment via API, you will receive an object with the following fields:

Field Description
id Unique id of the payment
method The payment method object serialized for the cart
amount The amount of payment
state State of the payment process
_links[self] Link to itself
_links[payment-method] Link to the related payment method
_links[order] Link to the related order

Note: Read more about Payments in the component docs.

Getting a Single Payment

To retrieve the details of a payment you will need to call the /api/v1/payments/{id} endpoint with the GET
method.

Definition

GET /api/v1/payments/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested payment

Example

To see the details of the payment with id = 20 use the below method:

$ curl http://demo.sylius.com/api/v1/payments/20 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The 20 id is just an example. Your value can be different.

344 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 200 OK

{
"id":20,
"method":{

"id":2,
"code":"bank_transfer",
"channels":[

{
"id":1,
"code":"US_WEB",
"name":"US Web Store",
"hostname":"localhost",
"color":"DeepSkyBlue",
"createdAt":"2017-02-26T11:31:19+0100",
"updatedAt":"2017-02-26T11:31:19+0100",
"enabled":true,
"taxCalculationStrategy":"order_items_based",
"_links":{

"self":{
"href":"\/api\/v1\/channels\/US_WEB"

}
}

}
],
"_links":{

"self":{
"href":"\/api\/v1\/payment-methods\/bank_transfer"

}
}

},
"amount":4507,
"state":"new",
"_links":{

"self":{
"href":"\/api\/v1\/payments\/20"

},
"payment-method":{

"href":"\/api\/v1\/payment-methods\/bank_transfer"
},
"order":{

"href":"\/api\/v1\/orders\/20"
}

}
}

Collection of Payments

To retrieve a paginated list of payments you will need to call the /api/v1/payments/ endpoint with the GET
method.

5.1. The REST API Reference 345

Sylius

Definition

GET /api/v1/payments/

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
limit query (optional) Number of items to display per page, by default = 10
sorting[amount] query (optional) Sorting direction on the amount field (DESC/ASC)
sorting[createdAt] query (optional) Sorting direction on the createdAt field (ASC by default)
sorting[updatedAt] query (optional) Sorting direction on the updatedAt field (DESC/ASC)

Example

To see the first page of the paginated list of payments with two payments on each page use the below snippet:

$ curl http://demo.sylius.com/api/v1/payments/\?limit\=2 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page":1,
"limit":2,
"pages":10,
"total":20,
"_links":{

"self":{
"href":"\/api\/v1\/payments\/?page=1&limit=2"

},
"first":{

"href":"\/api\/v1\/payments\/?page=1&limit=2"
},
"last":{

"href":"\/api\/v1\/payments\/?page=10&limit=2"
},
"next":{

"href":"\/api\/v1\/payments\/?page=2&limit=2"
}

},
"_embedded":{

"items":[
{

"id":1,
"method":{

"id":2,
"code":"bank_transfer",
"_links":{

(continues on next page)

346 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"self":{
"href":"\/api\/v1\/payment-methods\/bank_transfer"

}
}

},
"amount":3812,
"state":"new",
"_links":{

"self":{
"href":"\/api\/v1\/payments\/1"

},
"payment-method":{

"href":"\/api\/v1\/payment-methods\/bank_transfer"
},
"order":{

"href":"\/api\/v1\/orders\/1"
}

}
},
{

"id":2,
"method":{

"id":2,
"code":"bank_transfer",
"_links":{

"self":{
"href":"\/api\/v1\/payment-methods\/bank_transfer"

}
}

},
"amount":3915,
"state":"new",
"_links":{

"self":{
"href":"\/api\/v1\/payments\/2"

},
"payment-method":{

"href":"\/api\/v1\/payment-methods\/bank_transfer"
},
"order":{

"href":"\/api\/v1\/orders\/2"
}

}
}

]
}

}

5.1.15 Product Attributes API

These endpoints will allow you to easily manage product attributes. Base URI is /api/v1/product-attributes.

Product Attribute API response structure

If you request a product attribute via API, you will receive an object with the following fields:

5.1. The REST API Reference 347

Sylius

Field Description
id Id of the product attribute
code Unique product attribute identifier
position The position of the product attribute among other product attributes
type Type of the product attribute (for example text)
translations Collection of translations (each contains name in given language)

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the product attribute
code Unique product attribute identifier
position The position of the product attribute among other product attributes
type Type of the product attribute (for example text)
translations Collection of translations (each contains name in given language)
updatedAt Last update date of the product attribute
createdAt Creation date of the product attribute

Note: Read more about Product Attributes in the component docs.

Creating a Product Attribute

To create a new product attribute you will need to call the /api/v1/products-attributes/{type} endpoint
with the POST method.

Definition

POST /api/v1/product-attributes/{type}

Parameter Parameter type Description
Authorization header Token received during authentication
type url attribute Type of the product attribute (for example text)
code request (unique) Product attribute identifier

Example

To create a new text product attribute use the below method:

$ curl http://demo.sylius.com/api/v1/product-attributes/text \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "mug_material"

}
'

348 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 201 CREATED

{
"id": 1,
"code": "mug_material",
"type": "text",
"configuration": [],
"position": 0,
"translations": {},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/mug_material"

}
}

}

Warning: If you try to create a product attribute without code you will receive a 400 Bad Request error, that
will contain validation errors.

$ curl http://demo.sylius.com/api/v1/product-attributes/text \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \

Exemplary Response

STATUS: 400 BAD REQUEST

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"type": {},
"position": {},
"translations": {},
"code": {

"errors": [
"Please enter attribute code."

]
},
"configuration": {

"children": {
"min": {},
"max": {}

}
}

}
}

}

5.1. The REST API Reference 349

Sylius

You can also create a product attribute with additional (not required) fields:

Parameter Parameter
type

Description

position request Position within sorted product attribute list of the new product
attribute

transla-
tions[‘localeCode’][‘name’]

request Name of the product attribute

Some of product attributes have also their own (optional) configuration:

Prod-
uct
at-
tribute
type

configuration construction Description

text configuration[‘min’] configu-
ration[‘max’]

Both field must be defined together. They described minimal and max-
imal length of the text attribute.

select configuration[‘multiple’]
configuration[‘min’] con-
figuration[‘max’] configura-
tion[‘choices’]

The multiple, min, and max must be defined together. They allow
to select several values, limited by minimal and maximal amount of
entries. The choices is an array of available options in the product
attribute.

Note: You can also see exemplary request about creating configured select product attribute here.

Example

$ curl http://demo.sylius.com/api/v1/product-attributes/text/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "mug_material",
"translations": {

"de_CH": {
"name": "Becher Material"

},
"en_US": {

"name": "Mug material"
}

}
}

'

Exemplary Response

STATUS: 201 CREATED

350 Chapter 5. The REST API Reference

https://github.com/Sylius/Sylius/blob/master/tests/Controller/ProductAttributeApiTest.php

Sylius

{
"id": 1,
"code": "mug_material",
"type": "text",
"configuration": [],
"position": 0,
"createdAt": "2017-02-24T16:14:05+0100",
"updatedAt": "2017-02-24T16:14:05+0100",
"translations": {

"de_CH": {
"id": 1,
"locale": "de_CH",
"name": "Becher Material"

},
"en_US": {

"id": 2,
"locale": "en_US",
"name": "Mug material"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/mug_material"

}
}

}

Getting a Single Product Attribute

To retrieve the details of a product attribute you will need to call the /api/v1/product-attributes/code
endpoint with the GET method.

Definition

GET /api/v1/product-attributes/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the requested product attribute

Example

To see the details of the product attribute with code = sticker_paper use the below method:

$ curl http://demo.sylius.com/api/v1/product-attributes/sticker_paper \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The sticker_paper code is just an example. Your value can be different.

5.1. The REST API Reference 351

Sylius

Exemplary Response

STATUS: 200 OK

{
"id": 2,
"code": "sticker_paper",
"type": "text",
"configuration": [],
"position": 1,
"createdAt": "2017-03-29T10:05:00+0200",
"updatedAt": "2017-03-31T09:48:37+0200",
"translations": {

"en_US": {
"locale": "en_US",
"id": 2,
"name": "Sticker paper"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/sticker_paper"

}
}

}

Collection of Product Attributes

To retrieve a paginated list of product attributes you will need to call the /api/v1/product-attributes/
endpoint with the GET method.

Definition

GET /api/v1/product-attributes/

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
paginate query (optional) Number of items to display per page, by default = 10

To see the first page of all product attributes use the below method:

Example

$ curl http://demo.sylius.com/api/v1/product-attributes/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

352 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 10,
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/?page=1&limit=10"

},
"first": {

"href": "\/api\/v1\/product-attributes\/?page=1&limit=10"
},
"last": {

"href": "\/api\/v1\/product-attributes\/?page=1&limit=10"
}

},
"_embedded": {

"items": [
{

"id": 1,
"code": "mug_material",
"type": "select",
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"name": "Mug material"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/mug_material"

}
}

},
{

"id": 2,
"code": "sticker_paper",
"type": "text",
"position": 1,
"translations": {

"en_US": {
"locale": "en_US",
"id": 2,
"name": "Sticker paper"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/sticker_paper"

}
}

(continues on next page)

5.1. The REST API Reference 353

Sylius

(continued from previous page)

},
{

"id": 3,
"code": "sticker_resolution",
"type": "text",
"position": 2,
"translations": {

"en_US": {
"locale": "en_US",
"id": 3,
"name": "Sticker resolution"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/sticker_resolution"

}
}

},
{

"id": 4,
"code": "book_author",
"type": "text",
"position": 3,
"translations": {

"en_US": {
"locale": "en_US",
"id": 4,
"name": "Book author"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/book_author"

}
}

},
{

"id": 5,
"code": "book_isbn",
"type": "text",
"position": 4,
"translations": {

"en_US": {
"locale": "en_US",
"id": 5,
"name": "Book ISBN"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/book_isbn"

}
}

},
{

"id": 6,
(continues on next page)

354 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"code": "book_pages",
"type": "integer",
"position": 5,
"translations": {

"en_US": {
"locale": "en_US",
"id": 6,
"name": "Book pages"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/book_pages"

}
}

},
{

"id": 7,
"code": "book_genre",
"type": "select",
"position": 6,
"translations": {

"en_US": {
"locale": "en_US",
"id": 7,
"name": "Book genre"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/book_genre"

}
}

},
{

"id": 8,
"code": "t_shirt_brand",
"type": "text",
"position": 7,
"translations": {

"en_US": {
"locale": "en_US",
"id": 8,
"name": "T-Shirt brand"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/t_shirt_brand"

}
}

},
{

"id": 9,
"code": "t_shirt_collection",
"type": "text",
"position": 8,

(continues on next page)

5.1. The REST API Reference 355

Sylius

(continued from previous page)

"translations": {
"en_US": {

"locale": "en_US",
"id": 9,
"name": "T-Shirt collection"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/t_shirt_collection"

}
}

},
{

"id": 10,
"code": "t_shirt_material",
"type": "text",
"position": 9,
"translations": {

"en_US": {
"locale": "en_US",
"id": 10,
"name": "T-Shirt material"

}
},
"_links": {

"self": {
"href": "\/api\/v1\/product-attributes\/t_shirt_material"

}
}

}
]

}
}

Updating a Product Attribute

To fully update a product attribute you will need to call the /api/v1/product-attributes/code endpoint
with the PUT method.

Definition

PUT /api/v1/product-attributes/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique product attribute identifier

Example

To fully update the product attribute with code = mug_material use the below method:

356 Chapter 5. The REST API Reference

Sylius

$ curl http://demo.sylius.com/api/v1/product-attributes/mug_material \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"translations": {

"en_US": {
"name": "Mug material"

}
}

}
'

Exemplary Response

STATUS: 204 No Content

To update a product attribute partially you will need to call the /api/v1/product-attributes/code endpoint
with the PATCH method.

Definition

PATCH /api/v1/product-attributes/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique product attribute identifier

Example

To partially update the product attribute with code = mug_material use the below method:

$ curl http://demo.sylius.com/api/v1/product-attributes/mug_material \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PATCH \
--data '

{
"translations": {

"en_US": {
"name": "Mug material"

}
}

}
'

5.1. The REST API Reference 357

Sylius

Exemplary Response

STATUS: 204 No Content

Deleting a Product Attribute

To delete a product attribute you will need to call the /api/v1/product-attributes/code endpoint with the
DELETE method.

Definition

DELETE /api/v1/product-attributes/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique product attribute identifier

Example

To delete the product attribute with code = mug_material use the below method:

$ curl http://demo.sylius.com/api/v1/product-attributes/mug_material \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.16 Product Options API

These endpoints will allow you to easily manage product options. Base URI is /api/v1/product-options.

Product Option API response structure

If you request a product option via API, you will receive an object with the following fields:

Field Description
id Id of the product option
code Unique product option identifier
position The position of the product option among other product options

If you request for more detailed data, you will receive an object with the following fields:

358 Chapter 5. The REST API Reference

Sylius

Field Description
id Id of the product option
code Unique product option identifier
position The position of the product option among other product options
translations Collection of translations (each contains name in given language)
values Names of options in which the product can occur

Note: Read more about Product Options in the component docs.

Creating a Product Option

To create a new product option you will need to call the /api/v1/products-options/ endpoint with the POST
method.

Definition

POST /api/v1/product-options/

Parameter Parameter type Description
Authorization header Token received during authentication
code request (unique) Product option identifier
values request At least two option values

Example

To create a new product option use the below method:

$ curl http://demo.sylius.com/api/v1/product-options/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "MUG_SIZE",
"values": [

{
"code": "MUG_SIZE_S",
"translations": {

"en_US": {
"value": "Small"

}
}

},
{

"code": "MUG_SIZE_L",
"translations": {

"en_US": {
"value": "Large"

(continues on next page)

5.1. The REST API Reference 359

Sylius

(continued from previous page)

}
}

}
]

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 1,
"code": "MUG_SIZE",
"position": 0,
"translations": {},
"values": [

{
"code": "MUG_SIZE_S",
"translations": {

"en_US": {
"id": 1,
"locale": "en_US",
"value": "Small"

}
}

},
{

"code": "MUG_SIZE_L",
"translations": {

"en_US": {
"id": 2,
"locale": "en_US",
"value": "Large"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/product-options\/MUG_SIZE"

}
}

}

Warning: If you try to create a product option without all necessary fields you will receive a 400 Bad
Request error, that will contain validation errors.

$ curl http://demo.sylius.com/api/v1/product-options/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \

360 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 400 BAD REQUEST

{
"code": 400,
"message": "Validation Failed",
"errors": {

"errors": [
"Please add at least 2 option values."

],
"children": {

"position": {},
"translations": {},
"values": {},
"code": {

"errors": [
"Please enter option code."

]
}

}
}

}

You can also create a product option with additional (not required) fields:

Parameter Parameter
type

Description

position request Position within sorted product option list of the new product
option

transla-
tions[‘localeCode’][‘name’]

request Name of the product option

values request Collection of option values

Each product option value has the following fields:

Parameter Parameter type Description
code request (unique) Product option value identifier
translations[‘localeCode’][‘value’] request Translation of the value

Example

$ curl http://demo.sylius.com/api/v1/product-options/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "MUG_SIZE",
"translations": {

"de_CH": {
"name": "Bechergröße"

(continues on next page)

5.1. The REST API Reference 361

Sylius

(continued from previous page)

},
"en_US": {

"name": "Mug size"
}

},
"values": [

{
"code": "MUG_SIZE_S",
"translations": {

"de_CH": {
"value": "Klein"

},
"en_US": {

"value": "Small"
}

}
},
{

"code": "MUG_SIZE_L",
"translations": {

"de_CH": {
"value": "Groß"

},
"en_US": {

"value": "Large"
}

}
}

]
}

'

Exemplary Response

STATUS: 201 CREATED

{
"id": 1,
"code": "MUG_SIZE",
"position": 0,
"translations": {

"en_US": {
"id": 1,
"locale": "en_US",
"name": "Mug size"

},
"de_CH": {

"id": 2,
"locale": "de_CH",
"name": "Bechergröße"

}
},
"values": [

{

(continues on next page)

362 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"code": "MUG_SIZE_S",
"translations": {

"en_US": {
"id": 1,
"locale": "en_US",
"value": "Small"

},
"de_CH": {

"id": 2,
"locale": "de_CH",
"value": "Klein"

}
}

},
{

"code": "MUG_SIZE_L",
"translations": {

"de_CH": {
"id": 3,
"locale": "de_CH",
"value": "Groß"

},
"en_US": {

"id": 4,
"locale": "en_US",
"value": "Large"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/MUG_SIZE"

}
}

}

Getting a Single Product Option

To retrieve the details of a product option you will need to call the /api/v1/product-options/code endpoint
with the GET method.

Definition

GET /api/v1/product-options/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of requested the product option

5.1. The REST API Reference 363

Sylius

Example

To see the details of the product option with code = MUG_TYPE use the below method:

$ curl http://demo.sylius.com/api/v1/product-options/MUG_TYPE \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The mug_type is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

{
"id": 1,
"code": "MUG_TYPE",
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"value": "Mug type"

}
},
"values": [

{
"code": "mug_type_medium",
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"value": "Medium mug"

}
}

},
{

"code": "mug_type_double",
"translations": {

"en_US": {
"locale": "en_US",
"id": 2,
"value": "Double mug"

}
}

},
{

"code": "mug_type_monster",
"translations": {

"en_US": {
"locale": "en_US",
"id": 3,
"value": "Monster mug"

(continues on next page)

364 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/MUG_TYPE"

}
}

}

Collection of Product Options

To retrieve a paginated list of product options you will need to call the /api/v1/product-options/ endpoint
with the GET method.

Definition

GET /api/v1/product-options/

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
paginate query (optional) Number of items to display per page, by default = 10

To see the first page of all product options use the below method:

Example

$ curl http://demo.sylius.com/api/v1/product-options/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 4,
"pages": 1,
"total": 4,
"_links": {

"self": {
"href": "\/api\/v1\/product-options\/?sorting%5Bcode%5D=desc&page=1&

→˓limit=4"
},

(continues on next page)

5.1. The REST API Reference 365

Sylius

(continued from previous page)

"first": {
"href": "\/api\/v1\/product-options\/?sorting%5Bcode%5D=desc&page=1&

→˓limit=4"
},
"last": {

"href": "\/api\/v1\/product-options\/?sorting%5Bcode%5D=desc&page=1&
→˓limit=4"

}
},
"_embedded": {

"items": [
{

"id": 1,
"code": "mug_type",
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"value": "Mug type"

}
},
"values": [

{
"code": "mug_type_medium",
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"value": "Medium mug"

}
}

},
{

"code": "mug_type_double",
"translations": {

"en_US": {
"locale": "en_US",
"id": 2,
"value": "Double mug"

}
}

},
{

"code": "mug_type_monster",
"translations": {

"en_US": {
"locale": "en_US",
"id": 3,
"value": "Monster mug"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/mug_type"

(continues on next page)

366 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

}
}

},
{

"id": 2,
"code": "sticker_size",
"position": 1,
"translations": {

"en_US": {
"locale": "en_US",
"id": 2,
"value": "Sticker size"

}
},
"values": [

{
"code": "sticker_size-3",
"translations": {

"en_US": {
"locale": "en_US",
"id": 4,
"value": "3\""

}
}

},
{

"code": "sticker_size_5",
"translations": {

"en_US": {
"locale": "en_US",
"id": 5,
"value": "5\""

}
}

},
{

"code": "sticker_size_7",
"translations": {

"en_US": {
"locale": "en_US",
"id": 6,
"value": "7\""

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/sticker_size"

}
}

},
{

"id": 3,
"code": "t_shirt_color",
"position": 2,
"translations": {

(continues on next page)

5.1. The REST API Reference 367

Sylius

(continued from previous page)

"en_US": {
"locale": "en_US",
"id": 3,
"value": "T-Shirt color"

}
},
"values": [

{
"code": "t_shirt_color_red",
"translations": {

"en_US": {
"locale": "en_US",
"id": 7,
"value": "Red"

}
}

},
{

"code": "t_shirt_color_black",
"translations": {

"en_US": {
"locale": "en_US",
"id": 8,
"value": "Black"

}
}

},
{

"code": "t_shirt_color_white",
"translations": {

"en_US": {
"locale": "en_US",
"id": 9,
"value": "White"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/t_shirt_color"

}
}

},
{

"id": 4,
"code": "t_shirt_size",
"position": 3,
"translations": {

"en_US": {
"locale": "en_US",
"id": 4,
"value": "T-Shirt size"

}
},
"values": [

{
(continues on next page)

368 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"code": "t_shirt_size_s",
"translations": {

"en_US": {
"locale": "en_US",
"id": 10,
"value": "S"

}
}

},
{

"code": "t_shirt_size_m",
"translations": {

"en_US": {
"locale": "en_US",
"id": 11,
"value": "M"

}
}

},
{

"code": "t_shirt_size_l",
"translations": {

"en_US": {
"locale": "en_US",
"id": 12,
"value": "L"

}
}

},
{

"code": "t_shirt_size_xl",
"translations": {

"en_US": {
"locale": "en_US",
"id": 13,
"value": "XL"

}
}

},
{

"code": "t_shirt_size_xxl",
"translations": {

"en_US": {
"locale": "en_US",
"id": 14,
"value": "XXL"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/t_shirt_size"

}
}

}
]

(continues on next page)

5.1. The REST API Reference 369

Sylius

(continued from previous page)

}
}

Updating a Product Option

To fully update a product option you will need to call the /api/v1/product-options/code endpoint with the
PUT method.

Definition

PUT /api/v1/product-options/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique product option identifier

Example

To fully update the product option with code = MUG_SIZE use the below method:

$ curl http://demo.sylius.com/api/v1/product-options/MUG_SIZE \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"translations": {

"en_US": {
"name": "Mug size"

}
}

}
'

Exemplary Response

STATUS: 204 No Content

To update a product option partially you will need to call the /api/v1/product-options/code endpoint with
the PATCH method.

Definition

PATCH /api/v1/product-options/{code}

370 Chapter 5. The REST API Reference

Sylius

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique product option identifier

Example

To partially update the product option with code = MUG_SIZE use the below method:

$ curl http://demo.sylius.com/api/v1/product-options/MUG_SIZE \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PATCH \
--data '

{
"translations": {

"en_US": {
"name": "Mug size"

}
}

}
'

Exemplary Response

STATUS: 204 No Content

Deleting a Product Option

To delete a product option you will need to call the /api/v1/product-options/code endpoint with the
DELETE method.

Definition

DELETE /api/v1/product-options/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique product option identifier

Example

To delete the product option with code = MUG_SIZE use the below method:

$ curl http://demo.sylius.com/api/v1/product-options/MUG_SIZE \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

5.1. The REST API Reference 371

Sylius

Exemplary Response

STATUS: 204 No Content

5.1.17 Product Reviews API

These endpoints will allow you to easily manage product reviews. Base URI is
/api/v1/products/{productCode}/reviews/.

Product Reviews API response structure

When you get a collection of resources, you will receive objects with the following fields:

Field Description
id Id of product review
title Title of product review
comment Comment of product review
author Customer author for product review (This is customer that added the product review; this will contain

customer resource information)
status Status of product review (New, Accepted, Rejected)
review-
Subject

This is the review subject for the product review. For this case of the product review, this will contain
a product resource

Note: Read more about ProductReviews docs.

Creating a Product Review

To create a new product review you will need to call the /api/v1/products/{productCode}/reviews/
endpoint with the POST method.

Definition

POST /api/v1/products/{productCode}/reviews/

Parameter Parameter type Description
Authorization header Token received during authentication
productCode url attribute Code of product for which the reviews should be created
title request Product review title
comment request Product review comment
rating request Product review rating (1..5)
author request Product review author

372 Chapter 5. The REST API Reference

Sylius

Example

To create a new product review for the product with code = MUG-TH use the below method.

$ curl http://demo.sylius.org/api/v1/products/MUG-TH/reviews/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"title": "A product review",
"rating": "3",
"comment": "This is a comment review",
"author": {

"email": "test@example.com"
}

}
'

Exemplary Response

STATUS: 201 Created

{
"id": 4,
"title": "A product review",
"rating": 3,
"comment": "This is a comment review",
"author": {

"id": 2,
"email": "test@example.com",
"emailCanonical": "test@example.com",
"gender": "u",
"_links": {

"self": {
"href": "/api/v1/customers/2"

}
}

},
"status": "new",
"reviewSubject": {

"id": 1,
"name": "MUG-TH",
"code": "MUG-TH",
"attributes": [],
"options": [],
"associations": [],
"translations": []

}
}

Warning: If you try to create a resource without title, rating, comment or author, you will receive a 400 Bad
Request error.

5.1. The REST API Reference 373

Sylius

Example

$ curl http://demo.sylius.org/api/v1/products/MUG-TH/reviews/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"rating": {

"errors": [
"You must check review rating."

],
"children": [

{},
{},
{},
{},
{}

]
},
"title": {

"errors": [
"Review title should not be blank."

]
},
"comment": {

"errors": [
"Review comment should not be blank."

]
},
"author": {

"children": {
"email": {

"errors": [
"Please enter your email."

]
}

}
}

}
}

}

374 Chapter 5. The REST API Reference

Sylius

Getting a Single Product Review

To retrieve the details of a product review you will need to call the /api/v1/products/{productCode}/
reviews/{id} endpoint with the GET method.

Definition

GET /api/v1/products/{productCode}/reviews/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Identifier of the product review
productCode url attribute Code of product for which the reviews should be displayed

Example

To see the details of the product review with id = 1, which is defined for the product with code = MUG-TH use
the below method.

$ curl http://demo.sylius.org/api/v1/products/MUG-TH/reviews/1 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"id": 1,
"title": "A product review",
"rating": 3,
"comment": "This is a comment review",
"author": {

"id": 2,
"email": "test@example.com",
"emailCanonical": "test@example.com",
"gender": "u",
"_links": {

"self": {
"href": "/api/v1/customers/2"

}
}

},
"status": "new",
"reviewSubject": {

"id": 1,
"name": "MUG-TH",
"code": "MUG-TH",
"attributes": [],
"options": [],

(continues on next page)

5.1. The REST API Reference 375

Sylius

(continued from previous page)

"associations": [],
"translations": []

}
}

Collection of Product Reviews

To retrieve a paginated list of reviews for a selected product you will need to call the /api/v1/products/
{productCode}/reviews/ endpoint with the GET method.

Definition

GET /api/v1/products/{productCode}/reviews/

Parameter Parameter
type

Description

Authorization header Token received during authentication
productCode url attribute Code of product for which the reviews should be displayed
limit query (optional) Number of items to display per page, by default = 10
sort-
ing[‘nameOfField’][‘direction’]

query (optional) Field and direction of sorting, by default ‘desc’ and
‘createdAt’

Example

To see the first page of all product reviews for the product with code = MUG-TH use the method below.

$ curl http://demo.sylius.org/api/v1/products/MUG-TH/reviews/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 3,
"_links": {

"self": {
"href": "/api/v1/products/MUG-TH/reviews/?page=1&limit=10"

},
"first": {

"href": "/api/v1/products/MUG-TH/reviews/?page=1&limit=10"
},
"last": {

(continues on next page)

376 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"href": "/api/v1/products/MUG-TH/reviews/?page=1&limit=10"
}

},
"_embedded": {

"items": [
{

"id": 4,
"title": "A product review",
"rating": 3,
"comment": "This is a comment review",
"author": {

"id": 2,
"email": "test@example.com",
"_links": {

"self": {
"href": "/api/v1/customers/2"

}
}

},
"status": "new",
"reviewSubject": {

"id": 1,
"name": "MUG-TH",
"code": "MUG-TH",
"options": [],
"averageRating": 0,
"images": [],
"_links": {

"self": {
"href": "/api/v1/products/MUG-TH"

}
}

},
"createdAt": "2017-10-04T20:19:06+03:00",
"updatedAt": "2017-10-04T20:19:06+03:00"

},
{

"id": 3,
"title": "A product review 2",
"rating": 5,
"comment": "This is a comment review 2",
"author": {

"id": 1,
"email": "onetest@example.com",
"_links": {

"self": {
"href": "/api/v1/customers/1"

}
}

},
"status": "new",
"reviewSubject": {

"id": 1,
"name": "MUG-TH",
"code": "MUG-TH",
"options": [],
"averageRating": 0,

(continues on next page)

5.1. The REST API Reference 377

Sylius

(continued from previous page)

"images": [],
"_links": {

"self": {
"href": "/api/v1/products/MUG-TH"

}
}

},
"createdAt": "2017-10-04T18:23:56+03:00",
"updatedAt": "2017-10-04T18:44:08+03:00"

},
{

"id": 1,
"title": "Test review 3",
"rating": 4,
"comment": "This is a comment review 3",
"author": {

"id": 1,
"email": "onetest@example.com",
"_links": {

"self": {
"href": "/api/v1/customers/1"

}
}

},
"status": "accepted",
"reviewSubject": {

"id": 1,
"name": "MUG-TH",
"code": "MUG-TH",
"options": [],
"averageRating": 0,
"images": [],
"_links": {

"self": {
"href": "/api/v1/products/MUG-TH"

}
}

},
"createdAt": "2017-10-03T23:53:24+03:00",
"updatedAt": "2017-10-04T19:18:00+03:00"

}
]

}
}

Updating Product Review

To fully update a product review you will need to call the /api/v1/products/{productCode}/reviews/
{id} endpoint with the PUT method.

Definition

PUT /api/v1/products/{productCode}/reviews/{id}

378 Chapter 5. The REST API Reference

Sylius

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Product review id
productCode url attribute Code of product for which the reviews should be updated
title request Product review title
comment request Product review comment
rating request Product review rating (1..5)

Example

To fully update the product review with id = 1 for the product with code = MUG-TH use the below method.

$ curl http://demo.sylius.org/api/v1/products/MUG-TH/reviews/1 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"title": "A product review",
"rating": "4",
"comment": "This is a comment for review"

}
'

Exemplary Response

STATUS: 204 No Content

To partially update a product review you will need to call the /api/v1/products/{productCode}/
reviews/{id} endpoint with the PATCH method.

Definition

PATCH /api/v1/products/{productCode}/reviews/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Identifier of the product review
productCode url attribute Code of product for which the reviews should be updated
title request Product review title

Example

To partially update the product review with id = 1 for the product with code = MUG-TH use the below method.

$ curl http://demo.sylius.org/api/v1/products/MUG-TH/reviews/1 \
-H "Authorization: Bearer SampleToken" \

(continues on next page)

5.1. The REST API Reference 379

Sylius

(continued from previous page)

-H "Content-Type: application/json" \
-X PATCH \
--data '

{
"title": "This is an another title for the review"

}
'

Exemplary Response

STATUS: 204 No Content

Deleting a Product Review

To delete a product review you will need to call the /api/v1/products/{productCode}/reviews/{id}
endpoint with the DELETE method.

Definition

DELETE /api/v1/products/{productCode}/reviews/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Identifier of the product review
productCode url attribute Code of product for which the reviews should be deleted

Example

To delete the product review with id = 1 from the product with code = MUG-TH use the below method.

$ curl http://demo.sylius.org/api/v1/products/MUG-TH/reviews/1 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

Accept a Product Review

To accept a product review you will need to call the /api/v1/products/{productCode}/reviews/{id}/
accept endpoint with the POST, PUT or PATCH method.

380 Chapter 5. The REST API Reference

Sylius

Definition

POST /api/v1/products/{productCode}/reviews/{id}/accept

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Identifier of the product review
productCode url attribute Code of product for which the reviews should be accepted

Example

To accept the product review with id = 1 from the product with code = MUG-TH use the below method.

$ curl http://demo.sylius.org/api/v1/products/MUG-TH/reviews/1/accept \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X POST

Exemplary Response

STATUS: 204 No Content

Reject a Product Review

To reject a product review you will need to call the /api/v1/products/{productCode}/reviews/{id}/
reject endpoint with the POST, PUT or PATCH method.

Definition

POST /api/v1/products/{productCode}/reviews/{id}/reject

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Identifier of the product review
productCode url attribute Code of product for which the reviews should be rejected

Example

To reject the product review with id = 1 from the product with code = MUG-TH use the below method.

$ curl http://demo.sylius.org/api/v1/products/MUG-TH/reviews/1/reject \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X POST

5.1. The REST API Reference 381

Sylius

Exemplary Response

STATUS: 204 No Content

5.1.18 Product Variants API

These endpoints will allow you to easily manage product variants. Base URI is
/api/v1/products/{productCode}/variants/.

Product Variant API response structure

When you get a collection of resources, “Default” serialization group will be used and the following fields will be
exposed:

Field Description
id Id of product variant
code Unique product variant’s identifier
position Position of variant in product (each product can have many variants and they can be ordered by

position)
optionValues Collection of options in which product is available (for example: small, medium and large mug)
translations Collection of translations (each contains name in given language)
tracked The information if the variant is tracked by inventory
channelPricings Collection of prices defined for all enabled channels
taxCategory Tax category to which variant is assigned
shippingCate-
gory

Shipping category to which variant is assigned

version Version of the product variant

If you request more detailed data, you will receive an object with the following fields:

Field Description
id Id of product variant
code Unique product variant’s identifier
position Position of variant in product (each product can have many variant and they can be ordered by

position)
tracked The information if the variant is tracked by inventory
channelPricings Collection of prices defined for all enabled channels
taxCategory Tax category to which variant is assigned
shippingCate-
gory

Shipping category to which variant is assigned

version Version of the product variant
optionValues Collection of options in which product is available (for example: small, medium and large mug)
translations Collection of translations (each contains name in given language)
onHold Information about how many product are currently reserved by customer
onHand Information about the number of product in given variant currently available in shop
width The physical width of variant
height The physical height of variant
depth The physical depth of variant
weight The physical weight of variant

382 Chapter 5. The REST API Reference

Sylius

Note: Read more about ProductVariant model in the component docs.

Creating a Product Variant

To create a new product variant you will need to call the /api/v1/products/productCode/variants/
endpoint with the POST method.

Definition

POST /api/v1/products/{productCode}/variants/

Parameter Parameter type Description
Authorization header Token received during authentication
productCode url attribute Id of product for which the variants should be displayed
code request (unique) Product variant identifier

Example

To create new product variant for the product with code = MUG-TH use the below method.

$ curl http://demo.sylius.com/api/v1/products/MUG-TH/variants/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "medium-theme-mug"

}
'

Exemplary Response

STATUS: 201 Created

{
"id": 331,
"code": "medium-theme-mug",
"optionValues": [],
"position": 0,
"translations": [],
"version": 1,
"onHold": 0,
"onHand": 0,
"tracked": false,
"channelPricings": [],
"_links": {

"self": {

(continues on next page)

5.1. The REST API Reference 383

Sylius

(continued from previous page)

"href": "\/api\/v1\/products\/MUG_TH\/variants\/medium-theme-mug"
},
"product": {

"href": "\/api\/v1\/products\/MUG_TH"
}

}
}

Warning: If you try to create a resource without code, you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/v1/products/MUG-TH/variants/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code":400,
"message":"Validation Failed",
"errors": {

"children": {
"enabled":{},
"translations":{},
"attributes":{},
"associations":{},
"channels":{},
"mainTaxon":{},
"productTaxons":{},
"images":{},
"code":{

"errors":["Please enter product code."]
},
"options":{}

}
}

}

You can also create a product variant with additional (not required) fields:

384 Chapter 5. The REST API Reference

Sylius

Parameter Parameter
type

Description

transla-
tions[‘localeCode’][‘name’]

request Name of the product variant

position request Position of variant in product
tracked request The information if the variant is tracked by inventory (true or false)
channelPricings request Collection of objects which contains prices for all enabled channels
taxCategory request Code of object which provides information about tax category to which

variant is assigned
shippingCategory request Code of object which provides information about shipping category to

which variant is assigned
optionValues request Object with information about ProductOption (by code) and Produc-

tOptionValue (by code)
onHand request Information about the number of product in given variant currently

available in shop
width request The width of variant
height request The height of variant
depth request The depth of variant
weight request The weight of variant

Warning: Channels must be created and enabled before the prices will be defined for they.

Example

Here is an example of creating a product variant with additional data for the product with code = MUG-TH.

$ curl http://demo.sylius.com/api/v1/products/MUG-TH/variants/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "double-theme-mug",
"translations": {

"en_US": {
"name": "Double Theme Mug"

}
},
"channelPricings": {

"US_WEB": {
"price": "1243"

}
},
"tracked": true,
"onHand": 5,
"taxCategory": "other",
"shippingCategory": "default",
"optionValues": {

"mug_type": "mug_type_double"
},
"width": 5,

(continues on next page)

5.1. The REST API Reference 385

Sylius

(continued from previous page)

"height": 10,
"depth": 15,
"weight": 20

}
'

Exemplary Response

STATUS: 201 Created

{
"id": 332,
"code": "double-theme-mug",
"optionValues": [

{
"name": "Mug type",
"code": "mug_type_double"

}
],
"position": 1,
"translations": {

"en_US": {
"locale": "en_US",
"id": 332,
"name": "Double Theme Mug"

}
},
"version": 1,
"onHold": 0,
"onHand": 5,
"tracked": true,
"weight": 20,
"width": 5,
"height": 10,
"depth": 15,
"taxCategory": {

"id": 3,
"code": "other",
"name": "Other",
"description": "Error est aut libero et. Recusandae rerum rem enim qui

→˓sapiente ea sed. Provident et aspernatur molestias et et.",
"createdAt": "2017-02-27T09:12:17+0100",
"updatedAt": "2017-02-27T09:12:17+0100",
"_links": {

"self": {
"href": "\/api\/v1\/tax-categories\/other"

}
}

},
"shippingCategory": {

"id": 1,
"code": "default",
"name": "Default shipping category",
"createdAt": "2017-02-27T10:48:14+0100",

(continues on next page)

386 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"updatedAt": "2017-02-27T10:48:15+0100",
"_links": {

"self": {
"href": "\/api\/v1\/shipping-categories\/default"

}
}

"channelPricings": {
"US_WEB": {

"channelCode": "US_WEB",
"price": 124300

}
},
"_links": {

"self": {
"href": "\/api\/v1\/products\/MUG_TH\/variants\/double-theme-mug"

},
"product": {

"href": "\/api\/v1\/products\/MUG_TH"
}

}
}

Getting a Single Product Variant

To retrieve the details of a product variant you will need to call the /api/v1/products/productCode/
variants/code endpoint with the GET method.

Definition

GET /api/v1/products/{productCode}/variants/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Identifier of the product variant
productCode url attribute Id of product for which the variants should be displayed

Example

To see the details of the product variant with code = medium-theme-mug, which is defined for the product with
code = MUG-TH use the below method.

$ curl http://demo.sylius.com/api/v1/products/MUG-TH/variants/medium-theme-mug \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

5.1. The REST API Reference 387

Sylius

STATUS: 200 OK

{
"id": 331,
"code": "medium-mug-theme",
"optionValues": [],
"position": 0,
"translations": [],
"version": 1,
"onHold": 0,
"onHand": 0,
"tracked": false,
"channelPricings": [],
"_links": {

"self": {
"href": "\/api\/v1\/products\/MUG_TH\/variants\/medium-mug-theme"

},
"product": {

"href": "\/api\/v1\/products\/MUG_TH"
}

}
}

Collection of Product Variants

To retrieve a paginated list of variants for a selected product you will need to call the /api/v1/products/
productCode/variants/ endpoint with the GET method.

Definition

GET /api/v1/products/{productCode}/variants/

Parameter Parameter
type

Description

Authorization header Token received during authentication
productCode url attribute Code of product for which the variants should be displayed
limit query (optional) Number of items to display per page, by default = 10
sort-
ing[‘nameOfField’][‘direction’]

query (optional) Field and direction of sorting, by default ‘desc’ and
‘createdAt’

Example

To see the first page of all product variants for the product with code = MUG-TH use the method below.

$ curl http://demo.sylius.com/api/v1/products/MUG-TH/variants/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

388 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 2,
"_links": {

"self": {
"href": "\/api\/v1\/products\/MUG_TH\/variants\/?page=1&limit=10"

},
"first": {

"href": "\/api\/v1\/products\/MUG_TH\/variants\/?page=1&limit=10"
},
"last": {

"href": "\/api\/v1\/products\/MUG_TH\/variants\/?page=1&limit=10"
}

},
"_embedded": {

"items": [
{

"id": 331,
"code": "medium-mug-theme",
"optionValues": [],
"position": 0,
"translations": [],
"version": 1,
"tracked": false,
"channelPricings": [],
"_links": {

"self": {
"href": "\/api\/v1\/products\/MUG_TH\/variants\/medium-mug-

→˓theme"
}

}
},
{

"id": 332,
"code": "double-theme-mug",
"optionValues": [

{
"name": "Mug type",
"code": "mug_type_double"

}
],
"position": 1,
"translations": {

"en_US": {
"locale": "en_US",
"id": 332,
"name": "Double Theme Mug"

}
},
"version": 1,
"tracked": true,

(continues on next page)

5.1. The REST API Reference 389

Sylius

(continued from previous page)

"taxCategory": {
"id": 3,
"code": "other",
"name": "Other",
"_links": {

"self": {
"href": "\/api\/v1\/tax-categories\/other"

}
}

},
"shippingCategory": {

"id": 1,
"code": "default",
"name": "Default shipping category",
"_links": {

"self": {
"href": "\/api\/v1\/shipping-categories\/default"

}
}

},
"tracked": false,
"channelPricings": {

"US_WEB": {
"channelCode": "US_WEB",
"price": 1200

}
},
"_links": {

"self": {
"href": "\/api\/v1\/products\/MUG_TH\/variants\/double-theme-

→˓mug"
}

}
}

]
}

}

Updating Product Variant

To fully update a product variant you will need to call the /api/v1/products/productCode/variants/
code endpoint with the PUT method.

Definition

PUT /api/v1/products/{productCode}/variants/{code}

390 Chapter 5. The REST API Reference

Sylius

Parameter Parame-
ter type

Description

Authorization header Token received during authentication
code url at-

tribute
Identifier of the product variant

productCode url at-
tribute

Id of product for which the variants should be displayed

transla-
tions[‘localeCode’][‘name’]

request (optional) Name of the product variant

position request (optional) Position of the variant in product
tracked request (optional) The information if the variant is tracked by inventory (true or

false)
channelPricings request (optional) Collection of prices for all the enabled channels
taxCategory request (optional) Code of object which provides information about tax category

to which the variant is assigned
shippingCategory request (optional) Code of object which provides information about shipping cat-

egory to which the variant is assigned
optionValues request (optional) Object with information about ProductOption (by code) and

ProductOptionValue (by code)
onHand request (optional) Information about the number of product in the given variant

currently available in shop
width request (optional) The width of the variant
height request (optional) The height of the variant
depth request (optional) The depth of the variant
weight request (optional) The weight of the variant

Example

To fully update the product variant with code = double-theme-mug for the product with code = MUG-TH
use the below method.

$ curl http://demo.sylius.com/api/v1/products/MUG-TH/variants/double-theme-mug \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"translations":{

"en_US": {
"name": "Monster mug"

}
},
"version": 1,
"channelPricings": {

"US_WEB": {
"price": 54

}
},
"tracked": true,
"onHand": 3,
"taxCategory": "other",
"shippingCategory": "default",
"width": 5,

(continues on next page)

5.1. The REST API Reference 391

Sylius

(continued from previous page)

"height": 10,
"depth": 15,
"weight": 20,
"optionValues": {

"mug_type" :"mug_type_monster"
}

}
'

Warning: Do not forget to pass version of the variant. Without this you will receive a 409 Conflict error.

Exemplary Response

STATUS: 204 No Content

To partially update a product variant you will need to call the /api/v1/products/productCode/variants/
code endpoint with the PATCH method.

Definition

PATCH /api/v1/products/{productCode}/variants/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Identifier of the product variant
productCode url attribute Id of product for which the variants should be displayed
translations[‘localeCode’][‘name’] request Name of product variant

Example

To partially update the product variant with code = double-theme-mug for the product with code = MUG-TH
use the below method.

$ curl http://demo.sylius.com/api/v1/products/MUG-TH/variants/double-theme-mug \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PATCH \
--data '

{
"translations": {

"pl": {
"name": "Gigantyczny kubek"

}
}

}
'

392 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 204 No Content

Deleting a Product Variant

To delete a product variant you will need to call the /api/v1/products/productCode/variants/code
endpoint with the DELETE method.

Definition

DELETE /api/v1/products/{productCode}/variants/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Identifier of the product variant
productCode url attribute Id of product for which the variants should be displayed

Example

To delete the product variant with code = double-theme-mug from the product with code = MUG-TH use
the below method.

$ curl http://demo.sylius.com/api/v1/products/MUG-TH/variants/double-theme-mug \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.19 Products API

These endpoints will allow you to easily manage products. Base URI is /api/v1/products.

Product API response structure

If you request a product via API, you will receive an object with the following fields:

5.1. The REST API Reference 393

Sylius

Field Description
id Id of the product
code Unique product identifier (for example SKU)
averageRating Average from accepted ratings given by customer
channels Collection of channels to which the product was assigned
translations Collection of translations (each contains slug and name in given language)
options Options assigned to the product
images Images assigned to the product

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the product
code Unique product identifier
averageRating Average from ratings given by customer
channels Collection of channels to which the product was assigned
translations Collection of translations (each contains slug and name in given language)
attributes Collection of attributes connected with the product (for example material)
associations Collection of products associated with the created product (for example accessories to this prod-

uct)
variants Collection of variants connected with the product
reviews Collection of reviews passed by customers
productTax-
ons

Collection of relations between product and taxons

mainTaxon The main taxon to whose the product is assigned

Note: Read more about Product model in the component docs.

Creating a Product

To create a new product you will need to call the /api/v1/products/ endpoint with the POST method.

Definition

POST /api/v1/products/

Parameter Parameter type Description
Authorization header Token received during authentication
code request (unique) Product identifier

Example

To create a new product use the below method:

394 Chapter 5. The REST API Reference

Sylius

$ curl http://demo.sylius.com/api/v1/products/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "TS3"

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 61,
"code": "TS3",
"attributes": [],
"options": [],
"associations": [],
"productTaxons": [],
"channels": [],
"reviews": [],
"averageRating": 0,
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/products\/TS3"

},
"variants": {

"href": "\/api\/v1\/products\/TS3\/variants\/"
}

}
}

Warning: If you try to create a product without name, code or slug, you will receive a 400 Bad Request
error, that will contain validation errors.

Example

$ curl http://demo.sylius.com/api/v1/products/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \

-X POST

Exemplary Response

STATUS: 400 Bad Request

5.1. The REST API Reference 395

Sylius

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"enabled": {},
"translations": {},
"attributes": {},
"associations": {},
"channels": {},
"mainTaxon": {},
"productTaxons": {},
"images": {},
"code": {

"errors": [
"Please enter product code."

]
},
"options": {}

}
}

}

You can also create a product with additional (not required) fields:

Parameter Param-
eter
type

Description

channels request Collection of channels codes, which we want to associate with created prod-
uct

transla-
tions[‘localeCode’][‘name’]

request Name of the product

transla-
tions[‘localeCode’][‘slug’]

request (unique) Slug for the product

options request Collection of options codes, which we want to associate with created product
images request Collection of images types, which we want to associate with created product
attributes request Array of attributes (each object has information about selected attribute’s

code, its value and locale in which it was defined)
associations request Object with code of productAssociationType and string in which the codes

of associated products was written down.
productTaxons request String in which the codes of taxons was written down (separated by comma)
mainTaxon request The main taxon’s code to whose product is assigned

Example

$ curl http://demo.sylius.com/api/v1/products/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "MUG_TH",
"mainTaxon": "mugs",

(continues on next page)

396 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"productTaxons": "mugs",
"channels": [

"US_WEB"
],
"attributes": [

{
"attribute": "mug_color",
"localeCode": "en_US",
"value": "yellow"

}
],

"options": [
"mug_type"

],
"associations": {

"similar_products": "SMM,BMM"
},

"translations": {
"en_US": {

"name": "Theme Mug",
"slug": "theme-mug"

},
"pl": {

"name": "Kubek z motywem",
"slug": "kubek-z-motywem"

}
},
"images": [

{
"type": "ford"

}
]

}
'

Exemplary Response

STATUS: 201 CREATED

{
"name": "Theme Mug",
"id": 69,
"code": "MUG_TH",
"attributes": [

{
"code": "mug_material",
"name": "Mug material",
"value": "concrete",
"type": "text",
"id": 155

}
],
"options": [

{

(continues on next page)

5.1. The REST API Reference 397

Sylius

(continued from previous page)

"id": 1,
"code": "mug_type",
"position": 0,
"values": [

{
"name": "Mug type",
"code": "mug_type_medium"

},
{

"name": "Mug type",
"code": "mug_type_double"

},
{

"name": "Mug type",
"code": "mug_type_monster"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/mug_type"

}
}

}
],
"associations": [

{
"id": 13,
"type": {

"name": "Similar products",
"id": 1,
"code": "similar_products",
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"name": "Similar products"

}
}

},
"associatedProducts": [

{
"name": "Batman mug",
"id": 63,
"code": "BMM",
"attributes": [],
"options": [],
"associations": [],
"translations": {

"en_US": {
"locale": "en_US",
"id": 63,
"name": "Batman mug",
"slug": "batman-mug"

}
},
"productTaxons": [],
"channels": [],

(continues on next page)

398 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"reviews": [],
"averageRating": 0,
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/products\/BMM"

},
"variants": {

"href": "\/api\/v1\/products\/BMM\/variants\/"
}

}
},
{

"name": "Spider-Man Mug",
"id": 68,
"code": "SMM",
"attributes": [],
"options": [],
"associations": [],
"translations": {

"en_US": {
"locale": "en_US",
"id": 70,
"name": "Spider-Man Mug",
"slug": "spider-man-mug"

}
},
"productTaxons": [],
"channels": [],
"reviews": [],
"averageRating": 0,
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/products\/SMM"

},
"variants": {

"href": "\/api\/v1\/products\/SMM\/variants\/"
}

}
}

]
}

],
"translations": {

"en_US": {
"locale": "en_US",
"id": 71,
"name": "Theme Mug",
"slug": "theme-mug"

},
"pl": {

"locale": "pl",
"id": 72,
"name": "Kubek z motywem",
"slug": "kubek-z-motywem"

}
(continues on next page)

5.1. The REST API Reference 399

Sylius

(continued from previous page)

},
"productTaxons": [

{
"id": 78,
"taxon": {

"name": "Mugs",
"id": 2,
"code": "mugs",
"root": {

"name": "Category",
"id": 1,
"code": "category",
"children": {

"1": {
"name": "T-Shirts",
"id": 5,
"code": "t_shirts",
"children": [],
"left": 4,
"right": 5,
"level": 1,
"position": 1,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/t_shirts"

}
}

}
},
"left": 1,
"right": 6,
"level": 0,
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"name": "Category",
"slug": "category",
"description": "Cupiditate ut esse perspiciatis.

→˓Aspernatur nihil ducimus maxime doloremque. Ut aut ad unde necessitatibus
→˓voluptatibus id in."

}
},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/category"

}
}

},
"parent": {

"name": "Category",
"id": 1,
"code": "category",

(continues on next page)

400 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"children": {
"1": {

"name": "T-Shirts",
"id": 5,
"code": "t_shirts",
"children": [],
"left": 4,
"right": 5,
"level": 1,
"position": 1,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/t_shirts"

}
}

}
},
"left": 1,
"right": 6,
"level": 0,
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"name": "Category",
"slug": "category",
"description": "Cupiditate ut esse perspiciatis.

→˓Aspernatur nihil ducimus maxime doloremque. Ut aut ad unde necessitatibus
→˓voluptatibus id in."

}
},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/category"

}
}

},
"children": [],
"left": 2,
"right": 3,
"level": 1,
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 2,
"name": "Mugs",
"slug": "mugs",
"description": "Non omnis vel impedit eaque necessitatibus et

→˓eveniet. Fugiat distinctio quos aut commodi ea minima. Et natus ratione sit aperiam
→˓a molestiae. Eligendi sed cumque deleniti unde magnam."

}
},

(continues on next page)

5.1. The REST API Reference 401

Sylius

(continued from previous page)

"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/mugs"

}
}

},
"position": 0

}
],
"channels": [

{
"id": 1,
"code": "US_WEB",
"name": "US Web Store",
"hostname": "localhost",
"color": "DarkSeaGreen",
"createdAt": "2017-02-27T09:12:16+0100",
"updatedAt": "2017-02-27T09:12:16+0100",
"enabled": true,
"taxCalculationStrategy": "order_items_based",
"_links": {

"self": {
"href": "\/api\/v1\/channels\/US_WEB"

}
}

}
],
"mainTaxon": {

"name": "Mugs",
"id": 2,
"code": "mugs",
"root": {

"name": "Category",
"id": 1,
"code": "category",
"children": {

"1": {
"name": "T-Shirts",
"id": 5,
"code": "t_shirts",
"children": [],
"left": 4,
"right": 5,
"level": 1,
"position": 1,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/t_shirts"

}
}

}
},
"left": 1,
"right": 6,

(continues on next page)

402 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"level": 0,
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"name": "Category",
"slug": "category",
"description": "Cupiditate ut esse perspiciatis. Aspernatur nihil

→˓ducimus maxime doloremque. Ut aut ad unde necessitatibus voluptatibus id in."
}

},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/category"

}
}

},
"parent": {

"name": "Category",
"id": 1,
"code": "category",
"children": {

"1": {
"name": "T-Shirts",
"id": 5,
"code": "t_shirts",
"children": [],
"left": 4,
"right": 5,
"level": 1,
"position": 1,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/t_shirts"

}
}

}
},
"left": 1,
"right": 6,
"level": 0,
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"name": "Category",
"slug": "category",
"description": "Cupiditate ut esse perspiciatis. Aspernatur nihil

→˓ducimus maxime doloremque. Ut aut ad unde necessitatibus voluptatibus id in."
}

},
"images": [],

(continues on next page)

5.1. The REST API Reference 403

Sylius

(continued from previous page)

"_links": {
"self": {

"href": "\/api\/v1\/taxons\/category"
}

}
},
"children": [],
"left": 2,
"right": 3,
"level": 1,
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 2,
"name": "Mugs",
"slug": "mugs",
"description": "Non omnis vel impedit eaque necessitatibus et eveniet.

→˓ Fugiat distinctio quos aut commodi ea minima. Et natus ratione sit aperiam a
→˓molestiae. Eligendi sed cumque deleniti unde magnam."

}
},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/mugs"

}
}

},
"reviews": [],
"averageRating": 0,
"images": [

{
"id": 121,
"type": "ford",
"path": "65\/f6\/1e3b25f3721768b535e5c37ac005.jpeg"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/MUG_TH"

},
"variants": {

"href": "\/api\/v1\/products\/MUG_TH\/variants\/"
}

}
}

Note: The images (files) should be passed in an array as an attribute of request. See how it is done in Sylius here.

Getting a Single Product

To retrieve the details of a product you will need to call the /api/v1/product/code endpoint with the GET
method.

404 Chapter 5. The REST API Reference

https://github.com/Sylius/Sylius/blob/master/tests/Controller/ProductApiTest.php

Sylius

Definition

GET /api/v1/products/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique product identifier

Example

To see the details for the product with code = BMM use the below method:

$ curl http://demo.sylius.com/api/v1/products/BMM \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The BMM code is an exemplary value. Your value can be different. Check in the list of all products if you are
not sure which code should be used.

Exemplary Response

STATUS: 200 OK

{
"name": "Batman mug",
"id": 63,
"code": "BMM",
"attributes": [],
"options": [],
"associations": [],
"translations": {

"en_US": {
"locale": "en_US",
"id": 63,
"name": "Batman mug",
"slug": "batman-mug"

}
},
"productTaxons": [],
"channels": [],
"reviews": [],
"averageRating": 0,
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/products\/BMM"

},
"variants": {

"href": "\/api\/v1\/products\/BMM\/variants\/"
}

(continues on next page)

5.1. The REST API Reference 405

Sylius

(continued from previous page)

}
}

Collection of Products

To retrieve a paginated list of products you will need to call the /api/v1/products/ endpoint with the GET
method.

Definition

GET /api/v1/products/

Parameter Parameter
type

Description

Authorization header Token received during authentication
limit query (optional) Number of items to display per page, by default = 10
sort-
ing[‘nameOfField’][‘direction’]

query (optional) Field and direction of sorting, by default ‘desc’ and
‘createdAt’

To see the first page of all products use the below method:

Example

$ curl http://demo.sylius.com/api/v1/products/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 4,
"pages": 16,
"total": 63,
"_links": {

"self": {
"href": "\/api\/v1\/products\/?sorting%5Bcode%5D=desc&page=1&limit=4"

},
"first": {

"href": "\/api\/v1\/products\/?sorting%5Bcode%5D=desc&page=1&limit=4"
},
"last": {

"href": "\/api\/v1\/products\/?sorting%5Bcode%5D=desc&page=16&limit=4"
},
"next": {

(continues on next page)

406 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"href": "\/api\/v1\/products\/?sorting%5Bcode%5D=desc&page=2&limit=4"
}

},
"_embedded": {

"items": [
{

"name": "Spiderman Mug",
"id": 61,
"code": "SMM",
"options": [],
"averageRating": 0,
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/products\/SMM"

}
}

},
{

"name": "Theme Mug",
"id": 63,
"code": "MUG_TH",
"options": [

{
"id": 1,
"code": "mug_type",
"position": 0,
"values": [

{
"code": "mug_type_medium",
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"value": "Medium mug"

}
}

},
{

"code": "mug_type_double",
"translations": {

"en_US": {
"locale": "en_US",
"id": 2,
"value": "Double mug"

}
}

},
{

"code": "mug_type_monster",
"translations": {

"en_US": {
"locale": "en_US",
"id": 3,
"value": "Monster mug"

}
}

(continues on next page)

5.1. The REST API Reference 407

Sylius

(continued from previous page)

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/mug_type"

}
}

}
],
"averageRating": 0,
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/products\/MUG_TH"

}
}

},
{

"name": "Sticker \"quis\"",
"id": 16,
"code": "fe06f44e-2169-328f-8cd2-cd5495b4b6ad",
"options": [

{
"id": 2,
"code": "sticker_size",
"position": 1,
"values": [

{
"code": "sticker_size-3",
"translations": {

"en_US": {
"locale": "en_US",
"id": 4,
"value": "3\""

}
}

},
{

"code": "sticker_size_5",
"translations": {

"en_US": {
"locale": "en_US",
"id": 5,
"value": "5\""

}
}

},
{

"code": "sticker_size_7",
"translations": {

"en_US": {
"locale": "en_US",
"id": 6,
"value": "7\""

}
}

}
(continues on next page)

408 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

],
"_links": {

"self": {
"href": "\/api\/v1\/products\/sticker_size"

}
}

}
],
"averageRating": 0,
"images": [

{
"id": 31,
"type": "main"

},
{

"id": 32,
"type": "thumbnail"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/fe06f44e-2169-328f-8cd2-

→˓cd5495b4b6ad"
}

}
},
{

"name": "T-Shirt \"vel\"",
"id": 51,
"code": "f6858e9c-2f48-3d59-9f54-e7ac9898c0bd",
"options": [

{
"id": 3,
"code": "t_shirt_color",
"position": 2,
"values": [

{
"code": "t_shirt_color_red",
"translations": {

"en_US": {
"locale": "en_US",
"id": 7,
"value": "Red"

}
}

},
{

"code": "t_shirt_color_black",
"translations": {

"en_US": {
"locale": "en_US",
"id": 8,
"value": "Black"

}
}

},
{

(continues on next page)

5.1. The REST API Reference 409

Sylius

(continued from previous page)

"code": "t_shirt_color_white",
"translations": {

"en_US": {
"locale": "en_US",
"id": 9,
"value": "White"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/t_shirt_color"

}
}

},
{

"id": 4,
"code": "t_shirt_size",
"position": 3,
"values": [

{
"code": "t_shirt_size_s",
"translations": {

"en_US": {
"locale": "en_US",
"id": 10,
"value": "S"

}
}

},
{

"code": "t_shirt_size_m",
"translations": {

"en_US": {
"locale": "en_US",
"id": 11,
"value": "M"

}
}

},
{

"code": "t_shirt_size_l",
"translations": {

"en_US": {
"locale": "en_US",
"id": 12,
"value": "L"

}
}

},
{

"code": "t_shirt_size_xl",
"translations": {

"en_US": {
"locale": "en_US",
"id": 13,

(continues on next page)

410 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"value": "XL"
}

}
},
{

"code": "t_shirt_size_xxl",
"translations": {

"en_US": {
"locale": "en_US",
"id": 14,
"value": "XXL"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/t_shirt_size"

}
}

}
],
"averageRating": 0,
"images": [

{
"id": 101,
"type": "main"

},
{

"id": 102,
"type": "thumbnail"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/f6858e9c-2f48-3d59-9f54-

→˓e7ac9898c0bd"
}

}
}

]
}

}

Updating a Product

To fully update a product you will need to call the /api/v1/products/code endpoint with the PUT method.

Definition

PUT /api/v1/products/{code}

5.1. The REST API Reference 411

Sylius

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique product identifier
translations[‘localeCode’][‘name’] request Name of the product
translations[‘localeCode’][‘slug’] request (unique) Slug

Example

To fully update the product with code = BMM use the below method:

$ curl http://demo.sylius.com/api/v1/products/BMM \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"translations": {

"en_US": {
"name": "Batman mug",
"slug": "batman-mug"

}
}

}
'

Exemplary Response

STATUS: 204 No Content

To update a product partially you will need to call the /api/v1/products/code endpoint with the PATCH
method.

Definition

PATCH /api/v1/products/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique product identifier

Example

To partially update the product with code = BMM use the below method:

$ curl http://demo.sylius.com/api/v1/products/BMM \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PATCH \

(continues on next page)

412 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

--data '
{

"translations": {
"en_US": {

"name": "Batman mug"
}

}
}

'

Exemplary Response

STATUS: 204 No Content

Deleting a Product

To delete a product you will need to call the /api/v1/products/code endpoint with the DELETE method.

Definition

DELETE /api/v1/products/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique product identifier

Example

To delete the product with code = MUG_TH use the below method:

$ curl http://demo.sylius.com/api/v1/products/MUG_TH \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.20 Promotion Coupons API

These endpoints will allow you to easily manage promotion coupons. Base URI is
/api/v1/promotions/{promotionCode}/coupons.

5.1. The REST API Reference 413

Sylius

Promotion Coupon API response structure

If you request a promotion coupon via API, you will receive an object with the following fields:

Field Description
id Id of the coupon
code Unique coupon identifier
used Number of times this coupon has been used
expiresAt The date when the coupon will be no longer valid
usageLimit Number of times this coupon has been used

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the coupon
code Unique coupon identifier
used Number of times this coupon has been used
expiresAt The date when the coupon will be no longer valid
usageLimit Number of times this coupon has been used
createdAt Date of creation
updatedAt Date of last update
perCustomerUsageLimit Limit of the coupon usage by single customer

Note: Read more about Promotion Coupons in the component docs.

Creating a Promotion Coupon

To create a new promotion coupon you will need to call the /api/v1/promotions/{promotionCode}/
coupons/ endpoint with the POST method.

Definition

POST /api/v1/promotions/{promotionCode}/coupons/

Parameter Parameter type Description
Authorization header Token received during authentication
promotionCode url attribute Code of the promotion for which the coupon should be created
code request (unique) Promotion coupon identifier

Example

To create a new promotion coupon for the promotion with code = HOLIDAY-SALE use the below method.

$ curl http://demo.sylius.com/api/v1/promotions/HOLIDAY-SALE/coupons/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \

(continues on next page)

414 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

-X POST \
--data '

{
"code": "A3BCB"

}
'

Exemplary Response

STATUS: 201 Created

{
"id": 5,
"code": "A3BCB",
"used": 0,
"createdAt": "2017-03-06T13:14:19+0100",
"updatedAt": "2017-03-06T13:14:19+0100",
"_links": {

"self": {
"href": "\/api\/v1\/promotions\/HOLIDAY-SALE\/coupons\/A3BCB"

},
"promotion": {

"href": "\/api\/v1\/promotions\/HOLIDAY-SALE"
}

}
}

Warning: If you try to create a resource without code, you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/v1/promotions/HOLIDAY-SALE/coupons/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"usageLimit": {},
"expiresAt": {},

(continues on next page)

5.1. The REST API Reference 415

Sylius

(continued from previous page)

"perCustomerUsageLimit": {},
"code": {

"errors": [
"Please enter coupon code."

]
}

}
}

}

You can also create a promotion coupon with additional (not required) fields:

Parameter Parameter
type

Description

usageLimit request The information on how many times the coupon can be used
perCustomerUsage-
Limit

request The information on how many times the coupon can be used by one
customer

expiresAt request The information on when the coupon expires

Example

Here is an example of creating a promotion coupon with additional data for the promotion with code =
HOLIDAY-SALE.

$ curl http://demo.sylius.com/api/v1/promotions/HOLIDAY-SALE/coupons/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "A8BAB",
"expiresAt": "2020-01-01",
"usageLimit": 10,
"perCustomerUsageLimit": 1

}
'

Exemplary Response

STATUS: 201 Created

{
"id": 6,
"code": "A8BAB",
"usageLimit": 10,
"used": 0,
"expiresAt": "2020-01-01T00:00:00+0100",
"createdAt": "2017-03-06T13:15:27+0100",
"updatedAt": "2017-03-06T13:15:27+0100",
"perCustomerUsageLimit": 1,
"_links": {

(continues on next page)

416 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"self": {
"href": "\/api\/v1\/promotions\/HOLIDAY-SALE\/coupons\/A8BAB"

},
"promotion": {

"href": "\/api\/v1\/promotions\/HOLIDAY-SALE"
}

}
}

Getting a Single Promotion Coupon

To retrieve the details of a promotion coupon you will need to call the /api/v1/promotions/
{promotionCode}/coupons/{code} endpoint with the GET method.

Definition

GET /api/v1/promotions/{promotionCode}/coupons/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the requested coupon
promotionCode url attribute Code of promotion to which the coupon is assigned

Example

To see the details of the promotion coupon with code = A3BCB which belongs to the promotion with code =
HOLIDAY-SALE use the below method:

$ curl http://demo.sylius.com/api/v1/promotions/HOLIDAY-SALE/coupons/A3BCB \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The A3BCB and HOLIDAY-SALE codes are just examples. Your value can be different.

Exemplary Response

STATUS: 200 OK

{
"id": 5,
"code": "A3BCB",
"used": 0,
"createdAt": "2017-03-06T13:14:19+0100",
"updatedAt": "2017-03-06T13:14:19+0100",
"_links": {

"self": {

(continues on next page)

5.1. The REST API Reference 417

Sylius

(continued from previous page)

"href": "\/api\/v1\/promotions\/HOLIDAY-SALE\/coupons\/A3BCB"
},
"promotion": {

"href": "\/api\/v1\/promotions\/HOLIDAY-SALE"
}

}
}

Collection of Promotion Coupons

To retrieve a paginated list of promotion coupons you will need to call the /api/v1/promotions/
{promotionCode}/coupons endpoint with the GET method.

Definition

GET /api/v1/promotions/{promotionCode}/coupons

Parameter Parameter type Description
Authorization header Token received during authentication
promotionCode url attribute Code of promotion to which the coupons are assigned
page query (optional) Number of the page, by default = 1
paginate query (optional) Number of items to display per page, by default = 10

To see the first page of all promotion coupons assigned to the promotion with code = HOLIDAY-SALE use the
below method:

Example

$ curl http://demo.sylius.com/api/v1/promotions/HOLIDAY-SALE/coupons/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 4,
"pages": 1,
"total": 2,
"_links": {

"self": {
"href": "\/api\/v1\/promotions\/HOLIDAY-SALE\/coupons\/?sorting%5Bcode

→˓%5D=desc&page=1&limit=4"
},
"first": {

(continues on next page)

418 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"href": "\/api\/v1\/promotions\/HOLIDAY-SALE\/coupons\/?sorting%5Bcode
→˓%5D=desc&page=1&limit=4"

},
"last": {

"href": "\/api\/v1\/promotions\/HOLIDAY-SALE\/coupons\/?sorting%5Bcode
→˓%5D=desc&page=1&limit=4"

}
},
"_embedded": {

"items": [
{

"id": 5,
"code": "A3BCB",
"used": 0,
"_links": {

"self": {
"href": "\/api\/v1\/promotions\/HOLIDAY-SALE\/coupons\/A3BCB"

}
}

},
{

"id": 6,
"code": "A8BAB",
"usageLimit": 10,
"used": 0,
"expiresAt": "2020-01-01T00:00:00+0100",
"_links": {

"self": {
"href": "\/api\/v1\/promotions\/HOLIDAY-SALE\/coupons\/A8BAB"

}
}

}
]

}
}

Updating Promotion Coupon

To fully update a promotion coupon you will need to call the /api/v1/promotions/{promotionCode}/
coupons/{code} endpoint with the PUT method.

Definition

PUT /api/v1/promotions/{promotionCode}/coupons/{code}

5.1. The REST API Reference 419

Sylius

Parameter Parameter
type

Description

Authorization header Token received during authentication
code url attribute Promotion coupon identifier
promotionCode url attribute Code of the promotion to which the coupon is assigned
usageLimit request The information on how many times the coupon can be used
perCustomerUsage-
Limit

request The information on how many times the coupon can be used by one
customer

expiresAt request The information on when the coupon expires

Example

To fully update the promotion coupon with code = A3BCB for the promotion with code = HOLIDAY-SALE use
the below method.

$ curl http://demo.sylius.com/api/v1/promotions/HOLIDAY-SALE/coupons/A3BCB \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"expiresAt": "2020-01-01",
"usageLimit": 30,
"perCustomerUsageLimit": 2

}
'

Exemplary Response

STATUS: 204 No Content

To partially update a promotion coupon you will need to call the /api/v1/promotions/{promotionCode}/
coupons/{code} endpoint with the PATCH method.

Definition

PATCH /api/v1/promotions/{promotionCode}/coupons/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Promotion coupon identifier
promotionCode url attribute Code of promotion to which the coupon is assigned
usageLimit request The information how many times the coupon can be used

Example

To partially update the promotion coupon with code = A3BCB for the promotion with code = HOLIDAY-SALE
use the below method.

420 Chapter 5. The REST API Reference

Sylius

$ curl http://demo.sylius.com/api/v1/promotions/HOLIDAY-SALE/coupons/A3BCB \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PATCH \
--data '

{
"usageLimit": 30

}
'

Exemplary Response

STATUS: 204 No Content

Deleting a Promotion coupon

To delete a promotion coupon you will need to call the /api/v1/promotions/{promotionCode}/
coupons/{code} endpoint with the DELETE method.

Definition

DELETE /api/v1/promotions/{promotionCode}/coupons/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Promotion coupon identifier
promotionCode url attribute Code of promotion to which the coupon is assigned

Example

To delete the promotion coupon with code = A3BCB from the promotion with code = HOLIDAY-SALE use the
below method.

$ curl http://demo.sylius.com/api/v1/promotions/HOLIDAY-SALE/coupons/A3BCB \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.21 Promotions API

These endpoints will allow you to easily manage promotions. Base URI is /api/v1/promotions.

5.1. The REST API Reference 421

Sylius

Promotion structure

Promotion API response structure

If you request a promotion via API, you will receive an object with the following fields:

Field Description
id Id of the promotion
code Unique promotion identifier
name The name of the promotion

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the promotion
code Unique promotion identifier
name The name of the promotion
startsAt Start date
endsAt End date
usageLimit Promotion’s usage limit
used Number of times this promotion has been used
priority When exclusive, promotion with top priority will be applied
couponBased Whether this promotion is triggered by a coupon
exclusive When true the promotion cannot be applied together with other promotions
rules Associated rules
actions Associated actions
createdAt Date of creation
updatedAt Date of last update
channels Collection of channels in which the promotion is available

Note: Read more about Promotions in the component docs.

Creating a Promotion

To create a new promotion you will need to call the /api/v1/promotions/ endpoint with the POST method.

Definition

POST /api/v1/promotions/

Parameter Parameter type Description
Authorization header Token received during authentication
code request (unique) Promotion identifier
name request Name of the promotion

422 Chapter 5. The REST API Reference

Sylius

Example

To create a new promotion use the below method:

$ curl http://demo.sylius.com/api/v1/promotions/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "sd-promo",
"name": "Sunday promotion"

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 6,
"code": "sd-promo",
"name": "Sunday promotion",
"priority": 4,
"exclusive": false,
"used": 0,
"couponBased": false,
"rules": [],
"actions": [],
"createdAt": "2017-02-28T12:05:12+0100",
"updatedAt": "2017-02-28T12:05:13+0100",
"channels": [],
"_links": {

"self": {
"href": "\/api\/v1\/promotions\/sd-promo"

}
}

}

Warning: If you try to create a promotion without name or code, you will receive a 400 Bad Request error,
that will contain validation errors.

Example

$ curl http://demo.sylius.com/api/v1/promotions/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \

-X POST

5.1. The REST API Reference 423

Sylius

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"name": {

"errors": [
"Please enter promotion name."

]
},
"description": {},
"exclusive": {},
"usageLimit": {},
"startsAt": {

"children": {
"date": {},
"time": {}

}
},
"endsAt": {

"children": {
"date": {},
"time": {}

}
},
"priority": {},
"couponBased": {},
"rules": {},
"actions": {},
"channels": {

"children": [
{},
{}

]
},
"code": {

"errors": [
"Please enter promotion code."

]
}

}
}

}

You can also create a promotion with additional (not required) fields:

424 Chapter 5. The REST API Reference

Sylius

Parameter Parameter type Description
startsAt request Object with date and time fields
endsAt request Object with date and time fields
usageLimit request Promotion’s usage limit
used request Number of times this promotion has been used
priority request When exclusive, promotion with top priority will be applied
couponBased request Whether this promotion is triggered by a coupon
exclusive request When true the promotion cannot be applied together with other promotions
rules request Collection of rules which determines when the promotion will be applied
actions request Collections of actions which will be done when the promotion will be
channels request Collection of channels in which the promotion is available

Example

$ curl http://demo.sylius.com/api/v1/promotions/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "christmas-promotion",
"name": "Christmas Promotion",
"exclusive": true,
"priority": 0,
"couponBased": true,
"channels": [

"US_WEB"
],
"startsAt": {
"date": "2017-12-05",
"time": "11:00"
},
"endsAt": {

"date": "2017-12-31",
"time": "11:00"

},
"rules": [

{
"type": "nth_order",
"configuration": {

"nth": 3
}

}
],
"actions": [

{
"type": "order_fixed_discount",
"configuration": {

"US_WEB": {
"amount": 12

}
}

}
]

(continues on next page)

5.1. The REST API Reference 425

Sylius

(continued from previous page)

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 7,
"code": "christmas-promotion",
"name": "Christmas Promotion",
"priority": 0,
"exclusive": true,
"used": 0,
"startsAt": "2017-12-05T11:00:00+0100",
"endsAt": "2017-12-31T11:00:00+0100",
"couponBased": true,
"rules": [

{
"id": 3,
"type": "nth_order",
"configuration": {

"nth": 3
}

}
],
"actions": [

{
"id": 3,
"type": "order_fixed_discount",
"configuration": {

"US_WEB": {
"amount": 1200

}
}

}
],
"createdAt": "2017-03-06T11:40:38+0100",
"updatedAt": "2017-03-06T11:40:39+0100",
"channels": [

{
"id": 1,
"code": "US_WEB",
"name": "US Web Store",
"hostname": "localhost",
"color": "LawnGreen",
"createdAt": "2017-03-06T11:20:32+0100",
"updatedAt": "2017-03-06T11:24:37+0100",
"enabled": true,
"taxCalculationStrategy": "order_items_based",
"_links": {

"self": {
"href": "\/api\/v1\/channels\/US_WEB"

}

(continues on next page)

426 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

}
}

],
"_links": {

"self": {
"href": "\/api\/v1\/promotions\/christmas-promotion"

},
"coupons": {

"href": "\/api\/v1\/promotions\/christmas-promotion\/coupons\/"
}

}
}

Getting a Single Promotion

To retrieve the details of a promotion you will need to call the /api/v1/promotions/{code} endpoint with the
GET method.

Definition

GET /api/v1/promotions/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the requested promotion

Example

To see the details of the promotion with code = sd-promo use the below method:

$ curl http://demo.sylius.com/api/v1/promotions/sd-promo \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The sd-promo code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

{
"id": 6,
"code": "sd-promo",
"name": "Sunday promotion",
"priority": 2,
"exclusive": false,

(continues on next page)

5.1. The REST API Reference 427

Sylius

(continued from previous page)

"used": 0,
"couponBased": false,
"rules": [],
"actions": [],
"createdAt": "2017-02-28T12:05:12+0100",
"updatedAt": "2017-02-28T12:05:13+0100",
"channels": [],
"_links": {

"self": {
"href": "\/api\/v1\/promotions\/sd-promo"

}
}

}

Collection of Promotions

To retrieve a paginated list of promotions you will need to call the /api/v1/promotions/ endpoint with the GET
method.

Definition

GET /api/v1/promotions/

Parameter Pa-
ram-
eter
type

Description

Authorization header Token received during authentication
limit query (optional) Number of items to display per page, by default =

10
sorting[‘nameOfField’][‘direction’] query (optional) Field and direction of sorting, by default ‘desc’ and

‘priority’
criteria[‘nameOfCriterion’][‘searchOption’]
criteria[‘nameOfCriterion’][‘searchingPhrase’]

query (optional) Criterion, option and phrase of filtering, the criteria
can be for example ‘couponBased’ and ‘search’, option can be
‘equal’, ‘contains’.

To see the first page of all promotions use the below method:

Example

$ curl http://demo.sylius.com/api/v1/promotions/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

428 Chapter 5. The REST API Reference

Sylius

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 2,
"_links": {

"self": {
"href": "\/api\/v1\/promotions\/?page=1&limit=10"

},
"first": {

"href": "\/api\/v1\/promotions\/?page=1&limit=10"
},
"last": {

"href": "\/api\/v1\/promotions\/?page=1&limit=10"
}

},
"_embedded": {

"items": [
{

"id": 6,
"code": "sd-promo",
"name": "Sunday promotion",
"_links": {

"self": {
"href": "\/api\/v1\/promotions\/sd-promo"

}
}

},
{

"id": 7,
"code": "christmas-promotion",
"name": "Christmas Promotion",
"_links": {

"self": {
"href": "\/api\/v1\/promotions\/christmas-promotion"

},
"coupons": {

"href": "\/api\/v1\/promotions\/christmas-promotion\/coupons\/
→˓"

}
}

}
]

}
}

Updating a Promotion

To fully update a promotion you will need to call the /api/v1/promotions/{code} endpoint with the PUT
method.

5.1. The REST API Reference 429

Sylius

Definition

PUT /api/v1/promotions/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique promotion identifier
name request Name of the promotion

Example

To fully update the promotion with code = christmas-promotion use the below method:

$ curl http://demo.sylius.com/api/v1/promotions/christmas-promotion \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"name": "Christmas special promotion"

}
'

Exemplary Response

STATUS: 204 No Content

If you try to perform a full promotion update without all the required fields specified, you will receive a 400 Bad
Request error.

Example

$ curl http://demo.sylius.com/api/v1/promotions/christmas-promotion \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"name": {

(continues on next page)

430 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"errors": [
"Please enter promotion name."

]
},
"description": {},
"exclusive": {},
"usageLimit": {},
"startsAt": {

"children": {
"date": {},
"time": {}

}
},
"endsAt": {

"children": {
"date": {},
"time": {}

}
},
"priority": {},
"couponBased": {},
"rules": {},
"actions": {},
"channels": {

"children": [
{},
{}

]
},
"code": {}

}
}

}

To update a promotion partially you will need to call the /api/v1/promotions/{code} endpoint with the
PATCH method.

Definition

PATCH /api/v1/promotions/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique promotion identifier

Example

To partially update the promotion with code = christmas-promotion use the below method:

$ curl http://demo.sylius.com/api/v1/promotions/christmas-promotion \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \

(continues on next page)

5.1. The REST API Reference 431

Sylius

(continued from previous page)

-X PATCH \
--data '

{
"exclusive": true,
"priority": 1

}
'

Exemplary Response

STATUS: 204 No Content

Deleting a Promotion

To delete a promotion you will need to call the /api/v1/promotions/{code} endpoint with the DELETE
method.

Definition

DELETE /api/v1/promotions/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique promotion identifier

Example

To delete the promotion with code = christmas-promotion use the below method:

$ curl http://demo.sylius.com/api/v1/promotions/christmas-promotion \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.22 Provinces API

These endpoints will allow you to easily manage provinces. Base URI is /api/v1/provinces.

432 Chapter 5. The REST API Reference

Sylius

Province API response structure

If you request a province via API, you will receive an object with the following fields:

Field Description
id Id of the province
code Unique province identifier
name Name of the province

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the province
code Unique province identifier
name Name of the province
abbreviation Abbreviation of the province
createdAt The province’s creation date
updatedAt The province’s last updating date

Note: Read more about Provinces in the component docs.

Getting a Single Province

To retrieve the details of a specific province you will need to call the /api/v1/countries/{countryCode}/
provinces/{code} endpoint with the GET method.

Definition

GET /api/v1/countries/{countryCode}/provinces/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
countryCode url attribute Code of the country to which the province belongs
code url attribute Code of the requested province

Example

To see the details of the province with code = PL-MZ which belongs to the country with code = PL use the
below method:

$ curl http://demo.sylius.com/api/v1/countries/PL/provinces/PL-MZ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The PL ans PL-MZ codes are just examples. Your value can be different.

5.1. The REST API Reference 433

Sylius

Exemplary Response

STATUS: 200 OK

{
"id": 1,
"code": "PL-MZ",
"name": "mazowieckie",
"_links": {

"self": {
"href": "\/api\/v1\/countries\/PL\/provinces\/PL-MZ"

},
"country": {

"href": "\/api\/v1\/countries\/PL"
}

}
}

Deleting a Province

To delete a province you will need to call the /api/v1/countries/{countryCode}/provinces/{code}
endpoint with the DELETE method.

Definition

DELETE /api/v1/countries/{countryCode}/provinces/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
countryCode url attribute Code of the country to which the province belongs
code url attribute Code of the requested province

Example

$ curl http://sylius.test/api/v1/countries/PL/provinces/PL-MZ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.23 Shipments API

These endpoints will allow you to easily present shipments. Base URI is /api/v1/shipments.

434 Chapter 5. The REST API Reference

Sylius

Shipment API response structure

If you request a shipping via API, you will receive an object with the following fields:

Field Description
id Unique id of the shipment
state State of the shipping process
method The shipping method object serialized for cart
_links[self] Link to itself
_links[shipping-method] Link to related shipping method
_links[order] Link to related order

Getting a Single Shipment

To retrieve the details of a shipment you will need to call the /api/v1/shipments/{id} endpoint with the GET
method.

Definition

GET /api/v1/shipments/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
id url attribute Id of the requested shipment

Example

To see the details of the shipment method with id = 20 use the below method:

$ curl http://demo.sylius.com/api/v1/shipments/20 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The id = 20 is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

{
"id":20,
"state":"ready",
"method":{

"id":1,
"code":"ups",
"enabled":true,

(continues on next page)

5.1. The REST API Reference 435

Sylius

(continued from previous page)

"_links":{
"self":{

"href":"\/api\/v1\/shipping-methods\/ups"
},
"zone":{

"href":"\/api\/v1\/zones\/US"
}

}
},
"_links":{

"self":{
"href":"\/api\/v1\/shipments\/20"

},
"shipping-method":{

"href":"\/api\/v1\/shipping-methods\/ups"
},
"order":{

"href":"\/api\/v1\/orders\/20"
}

}
}

Collection of Shipments

To retrieve a paginated list of shipments you will need to call the /api/v1/shipments/ endpoint with the GET
method.

Definition

GET /api/v1/shipments/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
limit query (optional) Number of items to display per page, by default = 10
sorting[createdAt] query (optional) Order of sorting on created at field (asc by default)
sorting[updatedAt] query (optional) Order of sorting on updated at field (desc/asc)

Example

To see first page of paginated list of shipments with two shipments on each page use the below snippet:

$ curl http://demo.sylius.com/api/v1/shipments/\?limit\=2 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

436 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 200 OK

{
"page":1,
"limit":2,
"pages":10,
"total":20,
"_links":{

"self":{
"href":"\/api\/v1\/shipments\/?page=1&limit=2"

},
"first":{

"href":"\/api\/v1\/shipments\/?page=1&limit=2"
},
"last":{

"href":"\/api\/v1\/shipments\/?page=10&limit=2"
},
"next":{

"href":"\/api\/v1\/shipments\/?page=2&limit=2"
}

},
"_embedded":{

"items":[
{

"id":1,
"state":"ready",
"method":{

"id":2,
"code":"dhl_express",
"enabled":true,
"_links":{

"self":{
"href":"\/api\/v1\/shipping-methods\/dhl_express"

},
"zone":{

"href":"\/api\/v1\/zones\/US"
}

}
},
"_links":{

"self":{
"href":"\/api\/v1\/shipments\/1"

},
"shipping-method":{

"href":"\/api\/v1\/shipping-methods\/dhl_express"
},
"order":{

"href":"\/api\/v1\/orders\/1"
}

}
},
{

"id":2,
"state":"ready",
"method":{

(continues on next page)

5.1. The REST API Reference 437

Sylius

(continued from previous page)

"id":2,
"code":"dhl_express",
"enabled":true,
"_links":{

"self":{
"href":"\/api\/v1\/shipping-methods\/dhl_express"

},
"zone":{

"href":"\/api\/v1\/zones\/US"
}

}
},
"_links":{

"self":{
"href":"\/api\/v1\/shipments\/2"

},
"shipping-method":{

"href":"\/api\/v1\/shipping-methods\/dhl_express"
},
"order":{

"href":"\/api\/v1\/orders\/2"
}

}
}

]
}

}

5.1.24 Shipping Categories API

These endpoints will allow you to easily manage shipping categories. Base URI is /api/v1/shipping-categories.

When you get a collection of resources, “Default” serialization group will be used and following fields will be exposed:

Field Description
id Id of shipping category
name Name of shipping category
code Unique shipping category identifier

If you request for a more detailed data, you will receive an object with following fields:

Field Description
id Id of shipping category
name Name of shipping category
code Unique shipping category identifier
description Description of shipping category

Note: Read more about Shipping Categories in the component docs.

438 Chapter 5. The REST API Reference

Sylius

Creating Shipping Category

To create a new shipping category you will need to call the /api/v1/shipping-categories/ endpoint with
the POST method.

Definition

POST /api/v1/shipping-categories/

Parameter Parameter type Description
Authorization header Token received during authentication
name request Name of creating shipping category
code request (unique) Shipping category identifier
description request (optional) Description of creating shipping category

Example

To create a new shipping category use the below method.

$ curl http://demo.sylius.com/api/v1/shipping-categories/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"name": "Light",
"description": "Light weight items",
"code": "SC3"

}
'

Exemplary Response

STATUS: 201 Created

{
"id": 3,
"code": "SC3",
"name": "Light",
"description": "Light weight items",
"_links": {

"self": {
"href": "\/api\/shipping-categories\/SC3"

}
}

}

If you try to create a resource without name or code, you will receive a 400 Bad Request error.

5.1. The REST API Reference 439

Sylius

Example

$ curl http://demo.sylius.com/api/v1/shipping-categories/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"name": {

"errors": [
"Please enter shipping category name."

]
},
"code": {

"errors": [
"Please enter shipping category code."

]
},
"description": []

}
}

}

Getting a Single Shipping Category

To retrieve the details of a shipping category you will need to call the /api/v1/shipping-categories/
{code} endpoint with the GET method.

Definition

GET /api/v1/shipping-categories/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of requested resource

Example

To see the details of the shipping category with code = SC3 use the below method:

440 Chapter 5. The REST API Reference

Sylius

$ curl http://demo.sylius.com/api/v1/shipping-categories/SC3 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The SC3 code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

{
"id": 1,
"code": "SC3",
"name": "Light",
"createdAt": "2017-03-06T12:41:33+0100",
"updatedAt": "2017-03-06T12:44:01+0100",
"_links": {

"self": {
"href": "\/api\/v1\/shipping-categories\/SC3"

}
}

}

Collection of Shipping Categories

To retrieve a paginated list of shipping categories you will need to call the /api/v1/shipping-categories/
endpoint with the GET method.

Definition

GET /api/v1/shipping-categories/

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
limit query (optional) Number of items to display per page, by default = 10

To see the first page of all shipping categories assigned to the promotion with code = HOLIDAY-SALE use the
below method:

Example

$ curl http://demo.sylius.com/api/v1/shipping-categories/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

5.1. The REST API Reference 441

Sylius

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 4,
"pages": 1,
"total": 2,
"_links": {

"self": {
"href": "\/api\/v1\/shipping-categories\/?sorting%5Bcode%5D=desc&page=1&

→˓limit=4"
},
"first": {

"href": "\/api\/v1\/shipping-categories\/?sorting%5Bcode%5D=desc&page=1&
→˓limit=4"

},
"last": {

"href": "\/api\/v1\/shipping-categories\/?sorting%5Bcode%5D=desc&page=1&
→˓limit=4"

}
},
"_embedded": {

"items": [
{

"id": 1,
"code": "SC3",
"name": "Light",
"_links": {

"self": {
"href": "\/api\/v1\/shipping-categories\/SC3"

}
}

},
{

"id": 2,
"code": "SC1",
"name": "Regular",
"_links": {

"self": {
"href": "\/api\/v1\/shipping-categories\/SC1"

}
}

}
]

}
}

Updating Shipping Category

To fully update a shipping category you will need to call the /api/v1/shipping-categories/{code} end-
point with the PUT method.

442 Chapter 5. The REST API Reference

Sylius

Definition

PUT /api/v1/shipping-categories/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of requested resource
name request Name of creating shipping category
description request Description of creating shipping category

Example

To fully update the shipping category with code = SC3 use the below method.

$ curl http://demo.sylius.com/api/v1/shipping-categories/SC3 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"name": "Ultra light",
"description": "Ultra light weight items"

}
'

Exemplary Response

STATUS: 204 No Content

If you try to perform full shipping category update without all the required fields specified, you will receive a 400
Bad Request error.

Example

$ curl http://demo.sylius.com/api/v1/shipping-categories/SC3 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

(continues on next page)

5.1. The REST API Reference 443

Sylius

(continued from previous page)

"children": {
"name": {

"errors": [
"Please enter shipping category name."

]
},
"description": []

}
}

}

To partially update a shipping category you will need to call the /api/v1/shipping-categories/{code}
endpoint with the PATCH method.

Definition

PATCH /api/v1/shipping-categories/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of requested resource
name request (optional) Name of creating shipping category
description request (optional) Description of creating shipping category

Example

To partially update the shipping category with code = SC3 use the below method.

$ curl http://demo.sylius.com/api/v1/shipping-categories/SC3 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PATCH \
--data '

{
"name": "Light"

}
'

Exemplary Response

STATUS: 204 No Content

Deleting Shipping Category

To delete a shipping category you will need to call the /api/v1/shipping-categories/{code} endpoint
with the DELETE method.

444 Chapter 5. The REST API Reference

Sylius

Definition

DELETE /api/v1/shipping-categories/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of requested resource

Example

To delete the shipping category with code = SC3 use the below method.

$ curl http://demo.sylius.com/api/v1/shipping-categories/SC3 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.25 Shipping Methods API

These endpoints will allow you to easily manage shipping methods. Base URI is /api/v1/shipping-methods.

Shipping Method API response structure

If you request a shipping method via API, you will receive an object with the following fields:

Field Description
id Id of the shipping method
code Unique shipping method identifier
name The name of the shipping method
enabled Determine if the shipping method is enabled
categoryRequirement Reference to constant from ShippingMethodInterface
calculator Reference to constant from DefaultCalculators
configuration Extra configuration for the calculator
createdAt Date of creation
updatedAt Date of last update

Note: Read more about Shipping Methods in the component docs.

5.1. The REST API Reference 445

Sylius

Getting a Single Shipping Method

To retrieve the details of a shipping method you will need to call the /api/v1/shipping-methods/{code}
endpoint with the GET method.

Definition

GET /api/v1/shipping-methods/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the requested shipping method

Example

To see the details of the shipping method with code = ups use the below method:

$ curl http://demo.sylius.com/api/v1/shipping-methods/ups \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The ups code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

{
"id": 1,
"code": "ups",
"enabled": true,
"_links": {

"self": {
"href": "\/api\/v1\/shipping-methods\/ups"

},
"zone": {

"href": "\/api\/v1\/zones\/US"
}

}
}

5.1.26 Tax Categories API

These endpoints will allow you to easily manage tax categories. Base URI is /api/v1/tax-categories.

446 Chapter 5. The REST API Reference

Sylius

Tax Category structure

Tax Category API response structure

If you request a tax category via API, you will receive an object with the following fields:

Field Description
id Id of the tax category
code Unique tax category identifier
name Name of the tax category

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the tax category
code Unique tax category identifier
name Name of the tax category
description Description of the tax category
createdAt Date of creation
updatedAt Date of last update

Note: Read more about the Tax Category model in the component docs.

Creating a Tax Category

To create a new tax category you will need to call the /api/v1/tax-categories/ endpoint with the POST
method.

Definition

POST /api/v1/tax-categories/

Parameter Parameter type Description
Authorization header Token received during authentication
code request (unique) Tax category identifier
name request Name of the tax category

Example

To create a new tax category use the below method:

$ curl http://demo.sylius.com/api/v1/tax-categories/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

(continues on next page)

5.1. The REST API Reference 447

Sylius

(continued from previous page)

{
"code": "food",
"name": "Food"

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 4,
"code": "food",
"name": "Food",
"createdAt": "2017-02-21T12:49:48+0100",
"updatedAt": "2017-02-21T12:49:50+0100",
"_links": {

"self": {
"href": "\/api\/v1\/tax-categories\/food"

}
}

}

Warning: If you try to create a tax category without name or code you will receive a 400 Bad Request error,
that will contain validation errors.

Example

$ curl http://demo.sylius.com/api/v1/tax-categories/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"name": {

"errors": [
"Please enter tax category name."

]
},

(continues on next page)

448 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"description": {},
"code": {

"errors": [
"Please enter tax category code."

]
}

}
}

}

You can also create a tax category with additional (not required) fields:

Parameter Parameter type Description
description request Description of the tax category

Example

$ curl http://demo.sylius.com/api/v1/tax-categories/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "food",
"name": "Food",
"description": "The food category."

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 5,
"code": "food",
"name": "Food",
"description": "The food category.",
"createdAt": "2017-02-21T12:58:41+0100",
"updatedAt": "2017-02-21T12:58:42+0100",
"_links": {

"self": {
"href": "\/api\/v1\/tax-categories\/food"

}
}

}

Getting a Single Tax Category

To retrieve the details of a tax category you will need to call the /api/v1/tax-categories/{code} endpoint
with the GET method.

5.1. The REST API Reference 449

Sylius

Definition

GET /api/v1/tax-categories/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique tax category identifier

Example

$ curl http://demo.sylius.com/api/v1/tax-categories/food \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The food is an exemplary value. Your value can be different. Check in the list of all tax categories if you are
not sure which code should be used.

Exemplary Response

STATUS: 200 OK

{
"id": 5,
"code": "food",
"name": "Food",
"description": "The food category.",
"createdAt": "2017-02-21T12:58:41+0100",
"updatedAt": "2017-02-21T12:58:42+0100",
"_links": {

"self": {
"href": "\/api\/v1\/tax-categories\/food"

}
}

}

Collection of Tax Categories

To retrieve a paginated list of tax categories you will need to call the /api/v1/tax-categories/ endpoint with
the GET method.

Definition

GET /api/v1/tax-categories/

450 Chapter 5. The REST API Reference

Sylius

Parameter Parameter
type

Description

Authorization header Token received during authentication
limit query (optional) Number of items to display per page, by default = 10
sort-
ing[‘nameOfField’][‘direction’]

query (optional) Field and direction of sorting, by default ‘desc’ and
‘createdAt’

To see the first page of all tax categories use the below method:

Example

$ curl http://demo.sylius.com/api/v1/tax-categories/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 4,
"_links": {

"self": {
"href": "\/api\/v1\/tax-categories\/?page=1&limit=10"

},
"first": {

"href": "\/api\/v1\/tax-categories\/?page=1&limit=10"
},
"last": {

"href": "\/api\/v1\/tax-categories\/?page=1&limit=10"
}

},
"_embedded": {

"items": [
{

"id": 1,
"code": "clothing",
"name": "Clothing",
"_links": {

"self": {
"href": "\/api\/v1\/tax-categories\/clothing"

}
}

},
{

"id": 2,
"code": "books",
"name": "Books",
"_links": {

(continues on next page)

5.1. The REST API Reference 451

Sylius

(continued from previous page)

"self": {
"href": "\/api\/v1\/tax-categories\/books"

}
}

},
{

"id": 3,
"code": "other",
"name": "Other",
"_links": {

"self": {
"href": "\/api\/v1\/tax-categories\/other"

}
}

},
{

"id": 5,
"code": "food",
"name": "Food",
"_links": {

"self": {
"href": "\/api\/v1\/tax-categories\/food"

}
}

}
]

}
}

Updating a Tax Category

To fully update a tax category you will need to call the /api/v1/tax-categories/{code} endpoint with the
PUT method.

Definition

PUT /api/v1/tax-categories/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique tax category identifier
name request Name of the tax category
description request Description of the tax category

Example

To fully update the tax category with code = food use the below method:

$ curl http://demo.sylius.com/api/v1/tax-categories/food \
-H "Authorization: Bearer SampleToken" \

(continues on next page)

452 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

-H "Content-Type: application/json" \
-X PUT \
--data '

{
"name": "Vegetables",
"description": "The category of food: vegetables"

}
'

Exemplary Response

STATUS: 204 No Content

If you try to perform a full tax category update without all the required fields specified, you will receive a 400 Bad
Request error.

Example

$ curl http://demo.sylius.com/api/v1/tax-categories/food \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"name": {

"errors": [
"Please enter tax category name."

]
},
"description": {},
"code": {}

}
}

}

To update a tax category partially you will need to call the /api/v1/tax-categories/{code} endpoint with
the PATCH method.

5.1. The REST API Reference 453

Sylius

Definition

PATCH /api/v1/tax-categories/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique tax category identifier

Example

To partially update the tax category with code = food use the below method:

$ curl http://demo.sylius.com/api/v1/tax-categories/food \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PATCH \
--data '

{
"description": "The category of food: vegetables"

}
'

Exemplary Response

STATUS: 204 No Content

Deleting a Tax Category

To delete a tax category you will need to call the /api/v1/tax-categories/{code} endpoint with the
DELETE method.

Definition

DELETE /api/v1/tax-categories/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique tax category identifier

Example

$ curl http://demo.sylius.com/api/v1/tax-categories/food \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

454 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 204 No Content

5.1.27 Tax Rates API

These endpoints will allow you to easily manage tax rates. Base URI is /api/v1/tax-rates.

Tax Rate structure

Tax Rate API response structure

If you request a tax rate via API, you will receive an object with the following fields:

Field Description
id Id of the tax rate
code Unique tax rate identifier
name The name of the tax rate
amount Amount as float (for example 0,23)
includedInPrice Is the tax included in price?
calculator Type of calculator
createdAt Date of creation
updatedAt Date of last update

Note: Read more about Tax Rates in the component docs.

Getting a Single Tax Rate

To retrieve the details of a tax rate you will need to call the /api/v1/tax-rates/{code} endpoint with the GET
method.

Definition

GET /api/v1/tax-rates/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the requested tax rate

Example

To see the details of the tax rate with code = clothing_sales_tax_7 use the below method:

5.1. The REST API Reference 455

Sylius

$ curl http://demo.sylius.com/api/v1/tax-rates/clothing_sales_tax_7 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The clothing_sales_tax_7 code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

{
"id": 1,
"code": "clothing_sales_tax_7",
"name": "Clothing Sales Tax 7%",
"amount": 0.07,
"includedInPrice": false,
"calculator": "default",
"createdAt": "2017-02-17T15:01:15+0100",
"updatedAt": "2017-02-17T15:01:15+0100",
"_links": {

"self": {
"href": "\/api\/v1\/tax-rates\/clothing_sales_tax_7"

},
"category": {

"href": "\/api\/v1\/tax-categories\/clothing"
},
"zone": {

"href": "\/api\/v1\/zones\/US"
}

}
}

Collection of Tax Rates

To retrieve a paginated list of tax rates you will need to call the /api/v1/tax-rates/ endpoint with the GET
method.

Definition

GET /api/v1/tax-rates/

Parameter Parameter type Description
Authorization header Token received during authentication
page query (optional) Number of the page, by default = 1
paginate query (optional) Number of items to display per page, by default = 10

To see the first page of all tax rates use the below method:

456 Chapter 5. The REST API Reference

Sylius

Example

$ curl http://demo.sylius.com/api/v1/tax-rates/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 3,
"_links": {

"self": {
"href": "\/api\/v1\/tax-rates\/?page=1&limit=10"

},
"first": {

"href": "\/api\/v1\/tax-rates\/?page=1&limit=10"
},
"last": {

"href": "\/api\/v1\/tax-rates\/?page=1&limit=10"
}

},
"_embedded": {

"items": [
{

"id": 1,
"code": "clothing_sales_tax_7",
"name": "Clothing Sales Tax 7%",
"amount": 0.07,
"includedInPrice": false,
"calculator": "default",
"createdAt": "2017-02-17T15:01:15+0100",
"updatedAt": "2017-02-17T15:01:15+0100",
"_links": {

"self": {
"href": "\/api\/v1\/tax-rates\/clothing_sales_tax_7"

},
"category": {

"href": "\/api\/v1\/tax-categories\/clothing"
},
"zone": {

"href": "\/api\/v1\/zones\/US"
}

}
},
{

"id": 2,
"code": "books_sales_tax_2",
"name": "Books Sales Tax 2%",
"amount": 0.02,
"includedInPrice": true,

(continues on next page)

5.1. The REST API Reference 457

Sylius

(continued from previous page)

"calculator": "default",
"createdAt": "2017-02-17T15:01:15+0100",
"updatedAt": "2017-02-17T15:01:15+0100",
"_links": {

"self": {
"href": "\/api\/v1\/tax-rates\/books_sales_tax_2"

},
"category": {

"href": "\/api\/v1\/tax-categories\/books"
},
"zone": {

"href": "\/api\/v1\/zones\/US"
}

}
},
{

"id": 3,
"code": "sales_tax_20",
"name": "Sales Tax 20%",
"amount": 0.2,
"includedInPrice": true,
"calculator": "default",
"createdAt": "2017-02-17T15:01:15+0100",
"updatedAt": "2017-02-17T15:01:15+0100",
"_links": {

"self": {
"href": "\/api\/v1\/tax-rates\/sales_tax_20"

},
"category": {

"href": "\/api\/v1\/tax-categories\/other"
},
"zone": {

"href": "\/api\/v1\/zones\/US"
}

}
}

]
}

}

5.1.28 Taxons API

These endpoints will allow you to easily manage taxons. Base URI is /api/v1/taxons.

Taxon API response structure

If you request a taxon via API, you will receive an object with the following fields:

458 Chapter 5. The REST API Reference

Sylius

Field Description
id Id of the taxon
code Unique taxon identifier
root The main ancestor of the taxon
parent Parent of the taxon
translations Collection of translations (each contains slug, name and description in the respective language)
position The position of the taxon among other taxons
images Images assigned to the taxon

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the taxon
code Unique taxon identifier
root The main ancestor of the taxon
parent Parent of the taxon
translations Collection of translations (each contains slug, name and description in the respective language)
position Position of the taxon among other taxons
images Images assigned to the taxon
left Location within the whole taxonomy
right Location within the whole taxonomy
level How deep the taxon is in the tree
children Descendants of the taxon

Note: Read more about Taxons.

Creating a Taxon

To create a new taxon you will need to call the /api/v1/taxons/ endpoint with the POST method.

Definition

POST /api/v1/taxons/

Parameter Parameter type Description
Authorization header Token received during authentication
code request (unique) Taxon identifier
translations[‘localeCode’][‘name’] request Taxon name
translations[‘localeCode’][‘slug’] request (unique) Taxon slug

Example

To create new taxon use the below method:

5.1. The REST API Reference 459

Sylius

$ curl http://demo.sylius.com/api/v1/taxons/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "toys",
"translations": {

"en_US": {
"name": "Toys",
"slug": "category/toys"

}
}

}
'

Note: If you want to create your taxon as a child of another taxon, you should pass also the parent taxon’s code.

Exemplary Response

STATUS: 201 CREATED

{
"id": 11,
"code": "toys",
"children": [],
"left": 1,
"right": 2,
"level": 0,
"position": 1,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "/api/v1/taxons/11"

}
}

}

Warning: If you try to create a taxon without code you will receive a 400 Bad Request error, that will
contain validation errors.

Example

$ curl http://demo.sylius.com/api/v1/taxons/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

460 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"children": {
"translations": {},
"images": {},
"code": {

"errors": [
"Please enter taxon code."

]
},
"parent": {}

}
}

}

You can also create a taxon with additional (not required) fields:

Parameter Parameter type Description
translations[‘localeCode’][‘description’] request Description of the taxon
parent request The parent taxon’s code
images request Images codes assigned to the taxon

Example

$ curl http://demo.sylius.com/api/v1/taxons/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code":"toys",
"translations":{

"en_US": {
"name": "Toys",
"slug": "category/toys",
"description": "Toys for boys"

}
},
"parent": "category",
"images": [

{
"type": "ford"

}
]

}
'

5.1. The REST API Reference 461

Sylius

Exemplary Response

STATUS: 201 CREATED

{
"name": "toys",
"id": 9,
"code": "toys",
"root": {

"name": "Category",
"id": 1,
"code": "category",
"children": [

{
"name": "T-Shirts",
"id": 5,
"code": "t_shirts",
"children": [],
"left": 2,
"right": 7,
"level": 1,
"position": 0,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/5"

}
}

}
],
"left": 1,
"right": 10,
"level": 0,
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"name": "Category",
"slug": "category",
"description": "Consequatur illo amet aliquam."

}
},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/1"

}
}

},
"parent": {

"name": "Category",
"id": 1,
"code": "category",
"children": [

{
(continues on next page)

462 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"name": "T-Shirts",
"id": 5,
"code": "t_shirts",
"children": [],
"left": 2,
"right": 7,
"level": 1,
"position": 0,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/5"

}
}

}
],
"left": 1,
"right": 10,
"level": 0,
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"name": "Category",
"slug": "category",
"description": "Consequatur illo amet aliquam."

}
},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/1"

}
}

},
"children": [],
"left": 8,
"right": 9,
"level": 1,
"position": 1,
"translations": {

"en_US": {
"locale": "en_US",
"id": 9,
"name": "toys",
"slug": "toys",
"description": "Toys for boys"

}
},
"images": [

{
"id": 1,
"type": "ford",
"path": "b9/65/01cec3d87aa2b819e195331843f6.jpeg"

}
(continues on next page)

5.1. The REST API Reference 463

Sylius

(continued from previous page)

],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/9"

}
}

}

Note: The images should be passed in array as an attribute (files) of request. See how it is done in Sylius here.

Getting a Single Taxon

To retrieve the details of a taxon you will need to call the /api/v1/taxons/{code} endpoint with the GET
method.

Definition

GET /api/v1/taxons/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Identifier of the requested taxon

Example

To see the details of the taxon with code = toys use the below method:

$ curl http://demo.sylius.com/api/v1/taxons/toys \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The toys value was taken from the previous create response. Your value can be different. Check in the list of
all taxons if you are not sure which id should be used.

Exemplary Response

STATUS: 200 OK

{
"name": "toys",
"id": 9,
"code": "toys",
"root": {

"name": "Category",

(continues on next page)

464 Chapter 5. The REST API Reference

https://github.com/Sylius/Sylius/blob/master/tests/Controller/TaxonApiTest.php

Sylius

(continued from previous page)

"id": 1,
"code": "category",
"children": [

{
"name": "T-Shirts",
"id": 5,
"code": "t_shirts",
"children": [],
"left": 2,
"right": 7,
"level": 1,
"position": 0,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/5"

}
}

}
],
"left": 1,
"right": 10,
"level": 0,
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"name": "Category",
"slug": "category",
"description": "Consequatur illo amet aliquam."

}
},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/1"

}
}

},
"parent": {

"name": "Category",
"id": 1,
"code": "category",
"children": [

{
"name": "T-Shirts",
"id": 5,
"code": "t_shirts",
"children": [],
"left": 2,
"right": 7,
"level": 1,
"position": 0,
"translations": [],
"images": [],

(continues on next page)

5.1. The REST API Reference 465

Sylius

(continued from previous page)

"_links": {
"self": {

"href": "\/api\/v1\/taxons\/5"
}

}
}

],
"left": 1,
"right": 10,
"level": 0,
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"name": "Category",
"slug": "category",
"description": "Consequatur illo amet aliquam."

}
},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/1"

}
}

},
"children": [],
"left": 8,
"right": 9,
"level": 1,
"position": 1,
"translations": {

"en_US": {
"locale": "en_US",
"id": 9,
"name": "toys",
"slug": "toys",
"description": "Toys for boys"

}
},
"images": [

{
"id": 1,
"type": "ford",
"path": "b9/65/01cec3d87aa2b819e195331843f6.jpeg"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/9"

}
}

}

466 Chapter 5. The REST API Reference

Sylius

Collection of Taxons

To retrieve a paginated list of taxons you will need to call the /api/v1/taxons/ endpoint with the GET method.

Definition

GET /api/v1/taxons/

Parameter Parameter
type

Description

Authorization header Token received during authentication
limit query (optional) Number of items to display per page, by default = 10
sort-
ing[‘nameOfField’][‘direction’]

query (optional) Field and direction of sorting, by default ‘desc’ and
‘createdAt’

To see the first page of all taxons use the below method:

Example

$ curl http://demo.sylius.com/api/v1/taxons/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 5,
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/?page=1&limit=10"

},
"first": {

"href": "\/api\/v1\/taxons\/?page=1&limit=10"
},
"last": {

"href": "\/api\/v1\/taxons\/?page=1&limit=10"
}

},
"_embedded": {

"items": [
{

"name": "Category",
"id": 1,
"code": "category",
"position": 0,

(continues on next page)

5.1. The REST API Reference 467

Sylius

(continued from previous page)

"translations": {
"en_US": {

"locale": "en_US",
"id": 1,
"name": "Category",
"slug": "category",
"description": "Consequatur illo amet aliquam."

}
},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/1"

}
}

},
{

"name": "T-Shirts",
"id": 5,
"code": "t_shirts",
"root": {

"name": "Category",
"id": 1,
"code": "category",
"position": 0,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/1"

}
}

},
"parent": {

"name": "Category",
"id": 1,
"code": "category",
"position": 0,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/1"

}
}

},
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 5,
"name": "T-Shirts",
"slug": "t-shirts",
"description": "Modi aut laborum aut sint aut ea itaque porro.

→˓"
}

},
(continues on next page)

468 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/5"

}
}

},
{

"name": "Men",
"id": 6,
"code": "mens_t_shirts",
"root": {

"name": "Category",
"id": 1,
"code": "category",
"position": 0,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/1"

}
}

},
"parent": {

"name": "T-Shirts",
"id": 5,
"code": "t_shirts",
"position": 0,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/5"

}
}

},
"position": 0,
"translations": {

"en_US": {
"locale": "en_US",
"id": 6,
"name": "Men",
"slug": "t-shirts\/men",
"description": "Reprehenderit vero atque eaque sunt

→˓perferendis est."
}

},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/6"

}
}

},
{

"name": "Women",
(continues on next page)

5.1. The REST API Reference 469

Sylius

(continued from previous page)

"id": 7,
"code": "womens_t_shirts",
"root": {

"name": "Category",
"id": 1,
"code": "category",
"position": 0,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/1"

}
}

},
"parent": {

"name": "T-Shirts",
"id": 5,
"code": "t_shirts",
"position": 0,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/5"

}
}

},
"position": 1,
"translations": {

"en_US": {
"locale": "en_US",
"id": 7,
"name": "Women",
"slug": "t-shirts\/women",
"description": "Illum quia beatae assumenda impedit."

}
},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/7"

}
}

},
{

"name": "toys",
"id": 9,
"code": "toys",
"root": {

"name": "Category",
"id": 1,
"code": "category",
"position": 0,
"translations": [],
"images": [],
"_links": {

(continues on next page)

470 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"self": {
"href": "\/api\/v1\/taxons\/1"

}
}

},
"parent": {

"name": "Category",
"id": 1,
"code": "category",
"position": 0,
"translations": [],
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/1"

}
}

},
"position": 1,
"translations": {

"en_US": {
"locale": "en_US",
"id": 9,
"name": "toys",
"slug": "toys",
"description": "Toys for boys"

}
},
"images": [],
"_links": {

"self": {
"href": "\/api\/v1\/taxons\/9"

}
}

}
]

}
}

Updating Taxon

To fully update a taxon you will need to call the /api/v1/taxons/{code} endpoint with the PUT method.

Definition

PUT /api/v1/taxons/{code}

5.1. The REST API Reference 471

Sylius

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute (unique) Identifier of the requested taxon
translations[‘localeCode’][‘name’] request (optional) Name of the taxon
translations[‘localeCode’][‘slug’] request (optional) (unique) Slug
translations[‘localeCode’][‘description’] request (optional) Description of the taxon
parent request (optional) The parent taxon’s code
images request (optional) Images codes assigned to the taxon

Example

To fully update the taxon with code = toys use the below method:

$ curl http://demo.sylius.com/api/v1/taxons/toys \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"translations": {

"en_US": {
"name": "Dolls",
"slug": "dolls"

}
}

}
'

Exemplary Response

STATUS: 204 No Content

To update a taxon partially you will need to call the /api/v1/taxons/{code} endpoint with the PATCH method.

Definition

PATCH /api/v1/taxons/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute (unique) Identifier of the requested taxon

Example

To partially update the taxon with code = toys use the below method:

472 Chapter 5. The REST API Reference

Sylius

$ curl http://demo.sylius.com/api/v1/taxons/toys \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PATCH \
--data '

{
"translations": {

"en_US": {
"name": "Dolls"

}
}

}
'

Exemplary Response

STATUS: 204 No Content

Deleting a Taxon

To delete a taxon you will need to call the /api/v1/taxons/{code} endpoint with the DELETE method.

Definition

DELETE /api/v1/taxons/{id}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute (unique) Identifier of the requested taxon

Example

To delete the taxon with code = toys use the below method:

$ curl http://demo.sylius.com/api/v1/taxons/toys \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

5.1. The REST API Reference 473

Sylius

Set position of product in a Taxon

The products in Sylius can by grouped by taxon, therefore for every product there is a relation between the product
and the assigned taxon. What is more, every product can have a specific position in the taxon to which it belongs. To
put products in a specific order you will need to call the /api/v1/taxons/{code}/products endpoint wih
the PUT method.

Definition

PUT /api/v1/taxons/{code}/products

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Code of the taxon in which the order of product will be changed

Example

To change the order of products with codes yellow_t_shirt and princess_t_shirt in taxon with code
womens_t_shirts use the below method:

$ curl http://demo.sylius.com/api/v1/taxons/womens_t_shirts/products \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"productsPositions": [

{
"productCode": "yellow_t_shirt",
"position": 3

},
{

"productCode": "princess_t_shirt",
"position": 0

}
]

}
'

Note: Remember the yellow_t_shirt and princess_t_shirt and womens_t_shirts are just exemplary codes and you can
change them for the ones you need. Check in the list of all products if you are not sure which codes should be used.

Exemplary Response

STATUS: 204 NO CONTENT

474 Chapter 5. The REST API Reference

Sylius

5.1.29 Zones API

These endpoints will allow you to easily manage zones. Base URI is /api/v1/zones.

Zone structure

Zone API response structure

If you request a zone via API, you will receive an object with the following fields:

Field Description
id Id of the zone
code Unique zone identifier
name Name of the zone
type Type of the zone

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the zone
code Unique zone identifier
name Name of the zone
type Type of the zone
scope Scope of the zone
members Members of the zone
createdAt Date of creation
updatedAt Date of last update

Note: Read more about the Zone model in the component docs.

Creating a Zone

To create a new zone you will need to call the /api/v1/zones/{type} endpoint with the POST method.

Definition

POST /api/v1/zones/{type}

Parameter Parameter type Description
Authorization header Token received during authentication
type url attribute Type of a creating zone
code request (unique) Zone identifier
name request Name of the zone
scope request Scope of the zone
members request Members of the zone

5.1. The REST API Reference 475

Sylius

Note: Read more about Zone types in the component docs.

Example

To create a new country zone use the below method:

$ curl http://demo.sylius.com/api/v1/zones/country \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
--data '

{
"code": "EU",
"name": "European Union",
"scope": "all",
"members": [

{
"code": "PL"

}
]

}
'

Exemplary Response

STATUS: 201 CREATED

{
"id": 2,
"code": "EU",
"name": "European Union",
"type": "country",
"scope": "all",
"_links": {

"self": {
"href": "\/api\/v1\/zones\/EU"

}
}

}

Warning: If you try to create a zone without name, code, scope or member, you will receive a 400 Bad
Request error, that will contain validation errors.

Example

$ curl http://demo.sylius.com/api/v1/zones/country \
-H "Authorization: Bearer SampleToken" \

(continues on next page)

476 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"errors": [
"Please add at least 1 zone member."

],
"children": {

"name": {
"errors": [

"Please enter zone name."
]

},
"type": {},
"scope": {

"errors": [
"Please enter the scope."

]
},
"code": {

"errors": [
"Please enter zone code."

]
},
"members": {}

}
}

}

Getting a Single Zone

To retrieve the details of a zone you will need to call the /api/v1/zone/{code} endpoint with the GET method.

Definition

GET /api/v1/zones/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique zone identifier

5.1. The REST API Reference 477

Sylius

Example

To see the details of the zone with code = EU use the below method:

$ curl http://demo.sylius.com/api/v1/zones/EU \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The EU code is an exemplary value. Your value can be different. Check in the list of all zones if you are not
sure which code should be used.

Exemplary Response

STATUS: 200 OK

{
"id": 2,
"code": "EU",
"name": "European Union",
"type": "country",
"scope": "all",
"_links": {

"self": {
"href": "\/api\/v1\/zones\/EU"

}
}

}

Collection of Zones

To retrieve a paginated list of zones you will need to call the /api/v1/zones/ endpoint with the GET method.

Definition

GET /api/v1/zones/

Parameter Parameter
type

Description

Authorization header Token received during authentication
limit query (optional) Number of items to display per page, by default = 10
sort-
ing[‘nameOfField’][‘direction’]

query (optional) Field and direction of sorting, by default ‘desc’ and
‘createdAt’

To see the first page of all zones use the below method:

478 Chapter 5. The REST API Reference

Sylius

Example

$ curl http://demo.sylius.com/api/v1/zones/ \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 2,
"_links": {

"self": {
"href": "\/api\/v1\/zones\/?page=1&limit=10"

},
"first": {

"href": "\/api\/v1\/zones\/?page=1&limit=10"
},
"last": {

"href": "\/api\/v1\/zones\/?page=1&limit=10"
}

},
"_embedded": {

"items": [
{

"id": 1,
"code": "US",
"name": "United States of America",
"type": "country",
"_links": {

"self": {
"href": "\/api\/v1\/zones\/US"

}
}

},
{

"id": 2,
"code": "EU",
"name": "European Union",
"type": "country",
"_links": {

"self": {
"href": "\/api\/v1\/zones\/EU"

}
}

}
]

}
}

5.1. The REST API Reference 479

Sylius

Updating a Zone

To fully update a zone you will need to call the /api/v1/zones/{code} endpoint with the PUT method.

Definition

PUT /api/v1/zones/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique zone identifier
name request Name of the zone
scope request Scope of the zone
members request Members of the zone

Example

To fully update the zone with code = EU use the below method:

$ curl http://demo.sylius.com/api/v1/zones/EU \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
--data '

{
"name": "European Union Zone",
"scope": "shipping",
"members": [

{
"code": "DE"

}
]

}
'

Exemplary Response

STATUS: 204 No Content

If you try to perform a full zone update without all the required fields specified, you will receive a 400 Bad
Request error.

Example

$ curl http://demo.sylius.com/api/v1/zones/EU \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT

480 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 400 Bad Request

{
"code": 400,
"message": "Validation Failed",
"errors": {

"errors": [
"Please add at least 1 zone member."

],
"children": {

"name": {
"errors": [

"Please enter zone name."
]

},
"type": {},
"scope": {

"errors": [
"Please enter the scope."

]
},
"code": {},
"members": {}

}
}

}

To update a zone partially you will need to call the /api/v1/zones/{code} endpoint with the PATCH method.

Definition

PATCH /api/v1/zones/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique zone identifier
scope request Scope of the zone

Example

To partially update the zone with code = EU use the below method:

$ curl http://demo.sylius.com/api/v1/zones/EU \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PATCH \
--data '

{
"scope": "tax"

(continues on next page)

5.1. The REST API Reference 481

Sylius

(continued from previous page)

}
'

Exemplary Response

STATUS: 204 No Content

Deleting a Zone

To delete a zone you will need to call the /api/v1/zones/{code} endpoint with the DELETE method.

Definition

DELETE /api/v1/zones/{code}

Parameter Parameter type Description
Authorization header Token received during authentication
code url attribute Unique zone identifier

Example

To delete the zone with code = EU use the below method:

$ curl http://demo.sylius.com/api/v1/zones/EU \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.30 Sorting and filtration

In the Sylius API, a list of resources can be sorted and filtered by passed url query parameters. Here you can find
examples how to do it with sample resources.

Note: To find out by which fields the api resources can be sorted and how they can be filtered you should check the
grid configuration of these here

482 Chapter 5. The REST API Reference

https://github.com/Sylius/Sylius/tree/master/src/Sylius/Bundle/AdminApiBundle/Resources/config/grids

Sylius

How to sort resources?

Let’s assume that you want to sort products by code in descending order. In this case you should call the /api/v1/
products/ endpoint with the GET method and provide sorting query parameters.

Definition

GET /api/v1/products/?sorting\[{nameOfField}\]={direction}'

Parameter Parameter type Description
Authorization header Token received during authentication
nameOfField query (required) Name of field by which the resource will be sorted
direction query (required) Define a direction of ordering
limit query (optional) Number of items to display per page, by default = 10

Example

$ curl 'http://demo.sylius.com/api/v1/products/?sorting\[code\]=desc&limit=4' \
-H "Authorization: Bearer SampleToken"

Exemplary response

STATUS: 200 OK

{
"page": 1,
"limit": 4,
"pages": 15,
"total": 60,
"_links": {

"self": {
"href": "\/api\/v1\/products\/?sorting%5Bcode%5D=desc&page=1&limit=4"

},
"first": {

"href": "\/api\/v1\/products\/?sorting%5Bcode%5D=desc&page=1&limit=4"
},
"last": {

"href": "\/api\/v1\/products\/?sorting%5Bcode%5D=desc&page=15&limit=4"
},
"next": {

"href": "\/api\/v1\/products\/?sorting%5Bcode%5D=desc&page=2&limit=4"
}

},
"_embedded": {

"items": [
{

"name": "Book \"facilis\" by Deborah Schmitt",
"id": 32,
"code": "fe1a18b9-f67a-35fb-bc64-78a60c724493",
"options": [],

(continues on next page)

5.1. The REST API Reference 483

Sylius

(continued from previous page)

"averageRating": 3,
"images": [

{
"id": 63,
"type": "main"

},
{

"id": 64,
"type": "thumbnail"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/fe1a18b9-f67a-35fb-bc64-

→˓78a60c724493"
}

}
},
{

"name": "Book \"voluptate\" by Jazlyn Casper",
"id": 39,
"code": "f9d5ae66-6c1d-361b-a22d-28ed4bc8a10e",
"options": [],
"averageRating": 0,
"images": [

{
"id": 77,
"type": "main"

},
{

"id": 78,
"type": "thumbnail"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/f9d5ae66-6c1d-361b-a22d-

→˓28ed4bc8a10e"
}

}
},
{

"name": "Mug \"veniam\"",
"id": 5,
"code": "f64f7c29-1128-3d12-93d1-19932345b83d",
"options": [

{
"id": 1,
"code": "mug_type",
"position": 0,
"values": [

{
"code": "mug_type_medium",
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,

(continues on next page)

484 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"value": "Medium mug"
}

}
},
{

"code": "mug_type_double",
"translations": {

"en_US": {
"locale": "en_US",
"id": 2,
"value": "Double mug"

}
}

},
{

"code": "mug_type_monster",
"translations": {

"en_US": {
"locale": "en_US",
"id": 3,
"value": "Monster mug"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/mug_type"

}
}

}
],
"averageRating": 0,
"images": [

{
"id": 9,
"type": "main"

},
{

"id": 10,
"type": "thumbnail"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/f64f7c29-1128-3d12-93d1-

→˓19932345b83d"
}

}
},
{

"name": "Sticker \"animi\"",
"id": 22,
"code": "e77f129f-5921-3ad2-88bd-f27b59aad037",
"options": [

{
"id": 2,

(continues on next page)

5.1. The REST API Reference 485

Sylius

(continued from previous page)

"code": "sticker_size",
"position": 1,
"values": [

{
"code": "sticker_size-3",
"translations": {

"en_US": {
"locale": "en_US",
"id": 4,
"value": "3\""

}
}

},
{

"code": "sticker_size_5",
"translations": {

"en_US": {
"locale": "en_US",
"id": 5,
"value": "5\""

}
}

},
{

"code": "sticker_size_7",
"translations": {

"en_US": {
"locale": "en_US",
"id": 6,
"value": "7\""

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/sticker_size"

}
}

}
],
"averageRating": 0,
"images": [

{
"id": 43,
"type": "main"

},
{

"id": 44,
"type": "thumbnail"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/e77f129f-5921-3ad2-88bd-

→˓f27b59aad037"
}

(continues on next page)

486 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

}
}

]
}

}

How to filter resources?

Let’s assume that you want to find all products which contain the word sticker in the name. In this case you should
call the /api/v1/products/ endpoint with the GET method and provide filter query parameters.

Definition

GET /api/v1/products/?criteria\[{nameOfCriterion}\]\[type\]={searchOption}&criteria\[
→˓{nameOfCriterion}\]\[value\]={searchPhrase}'

Parameter Parameter type Description
Authorization header Token received during authentication
nameOfCriterion query (required) The name of criterion (for example “search”, “couponBased”)
searchPhrase query (required) The searching phrase
searchOption query (required) Option of searching (for example “contains”, “equal”)
limit query (optional) Number of items to display per page, by default = 10

Note: The nameOfCriterion is a key from the grid configuration of a sample resource.

Tip: You can find a list of all search options in GridBundle docs.

Example

$ curl 'http://demo.sylius.com/api/v1/products/?criteria\[search\]\[type\]=contains&
→˓criteria\[search\]\[value\]=sticker&limit=4' \

-H "Authorization: Bearer SampleToken"

Exemplary response

STATUS: 200 OK

{
"page": 1,
"limit": 4,
"pages": 15,
"total": 60,
"_links": {

(continues on next page)

5.1. The REST API Reference 487

Sylius

(continued from previous page)

"self": {
"href": "\/api\/v1\/products\/?criteria%5C%5Bsearch%5C%5D=sticker&page=1&

→˓limit=4"
},
"first": {

"href": "\/api\/v1\/products\/?criteria%5C%5Bsearch%5C%5D=sticker&page=1&
→˓limit=4"

},
"last": {

"href": "\/api\/v1\/products\/?criteria%5C%5Bsearch%5C%5D=sticker&page=15&
→˓limit=4"

},
"next": {

"href": "\/api\/v1\/products\/?criteria%5C%5Bsearch%5C%5D=sticker&page=2&
→˓limit=4"

}
},
"_embedded": {

"items": [
{

"name": "Book \"voluptates\" by Eveline Waters",
"id": 35,
"code": "00ebc508-48f5-326e-8f71-81e4feb0da73",
"options": [],
"averageRating": 0,
"images": [

{
"id": 69,
"type": "main"

},
{

"id": 70,
"type": "thumbnail"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/00ebc508-48f5-326e-8f71-

→˓81e4feb0da73"
}

}
},
{

"name": "Mug \"voluptatibus\"",
"id": 7,
"code": "0bd9c774-d659-37b7-a22e-44615c155633",
"options": [

{
"id": 1,
"code": "mug_type",
"position": 0,
"values": [

{
"code": "mug_type_medium",
"translations": {

"en_US": {
"locale": "en_US",

(continues on next page)

488 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"id": 1,
"value": "Medium mug"

}
}

},
{

"code": "mug_type_double",
"translations": {

"en_US": {
"locale": "en_US",
"id": 2,
"value": "Double mug"

}
}

},
{

"code": "mug_type_monster",
"translations": {

"en_US": {
"locale": "en_US",
"id": 3,
"value": "Monster mug"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/mug_type"

}
}

}
],
"averageRating": 0,
"images": [

{
"id": 13,
"type": "main"

},
{

"id": 14,
"type": "thumbnail"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/0bd9c774-d659-37b7-a22e-

→˓44615c155633"
}

}
},
{

"name": "Mug \"neque\"",
"id": 10,
"code": "13ad9ca9-8948-371b-b5b6-d2d988748b07",
"options": [

{
(continues on next page)

5.1. The REST API Reference 489

Sylius

(continued from previous page)

"id": 1,
"code": "mug_type",
"position": 0,
"values": [

{
"code": "mug_type_medium",
"translations": {

"en_US": {
"locale": "en_US",
"id": 1,
"value": "Medium mug"

}
}

},
{

"code": "mug_type_double",
"translations": {

"en_US": {
"locale": "en_US",
"id": 2,
"value": "Double mug"

}
}

},
{

"code": "mug_type_monster",
"translations": {

"en_US": {
"locale": "en_US",
"id": 3,
"value": "Monster mug"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/mug_type"

}
}

}
],
"averageRating": 0,
"images": [

{
"id": 19,
"type": "main"

},
{

"id": 20,
"type": "thumbnail"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/13ad9ca9-8948-371b-b5b6-

→˓d2d988748b07"
(continues on next page)

490 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

}
}

},
{

"name": "T-Shirt \"a\"",
"id": 56,
"code": "1823af3c-184a-359d-9c05-6417c7e6abe0",
"options": [

{
"id": 3,
"code": "t_shirt_color",
"position": 2,
"values": [

{
"code": "t_shirt_color_red",
"translations": {

"en_US": {
"locale": "en_US",
"id": 7,
"value": "Red"

}
}

},
{

"code": "t_shirt_color_black",
"translations": {

"en_US": {
"locale": "en_US",
"id": 8,
"value": "Black"

}
}

},
{

"code": "t_shirt_color_white",
"translations": {

"en_US": {
"locale": "en_US",
"id": 9,
"value": "White"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/t_shirt_color"

}
}

},
{

"id": 4,
"code": "t_shirt_size",
"position": 3,
"values": [

{
"code": "t_shirt_size_s",

(continues on next page)

5.1. The REST API Reference 491

Sylius

(continued from previous page)

"translations": {
"en_US": {

"locale": "en_US",
"id": 10,
"value": "S"

}
}

},
{

"code": "t_shirt_size_m",
"translations": {

"en_US": {
"locale": "en_US",
"id": 11,
"value": "M"

}
}

},
{

"code": "t_shirt_size_l",
"translations": {

"en_US": {
"locale": "en_US",
"id": 12,
"value": "L"

}
}

},
{

"code": "t_shirt_size_xl",
"translations": {

"en_US": {
"locale": "en_US",
"id": 13,
"value": "XL"

}
}

},
{

"code": "t_shirt_size_xxl",
"translations": {

"en_US": {
"locale": "en_US",
"id": 14,
"value": "XXL"

}
}

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/t_shirt_size"

}
}

}
],
"averageRating": 3,

(continues on next page)

492 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"images": [
{

"id": 111,
"type": "main"

},
{

"id": 112,
"type": "thumbnail"

}
],
"_links": {

"self": {
"href": "\/api\/v1\/products\/1823af3c-184a-359d-9c05-

→˓6417c7e6abe0"
}

}
}

]
}

}

• Introduction to Sylius REST API

• Authorization

• Admin Users API

• Carts API

• Channels API

• Checkout API

• Countries API

• Currencies API

• Customers API

• Exchange Rates API

• Locales API

• Orders API

• Payment Methods API

• Payments API

• Product Attributes API

• Product Options API

• Product Reviews API

• Product Variants API

• Products API

• Promotion Coupons API

• Promotions API

• Provinces API

5.1. The REST API Reference 493

Sylius

• Shipments API

• Shipping Categories API

• Shipping Methods API

• Tax Categories API

• Tax Rates API

• Taxons API

• Zones API

• Sorting and filtration

• Introduction to Sylius REST API

• Authorization

• Admin Users API

• Carts API

• Channels API

• Checkout API

• Countries API

• Currencies API

• Customers API

• Exchange Rates API

• Locales API

• Orders API

• Payment Methods API

• Payments API

• Product Attributes API

• Product Options API

• Product Reviews API

• Product Variants API

• Products API

• Promotion Coupons API

• Promotions API

• Provinces API

• Shipments API

• Shipping Categories API

• Shipping Methods API

• Tax Categories API

• Tax Rates API

• Taxons API

494 Chapter 5. The REST API Reference

Sylius

• Zones API

• Sorting and filtration

5.1. The REST API Reference 495

Sylius

496 Chapter 5. The REST API Reference

CHAPTER 6

The BDD Guide

In the BDD Guide you will learn how to write clean and reusable features, contexts and pages using Behat.

6.1 The BDD Guide

Behaviour driven development is an approach to software development process that provides software development
and management teams with shared tools and a shared process to collaborate on software development. The awesome
part of BDD is its ubiquitous language, which is used to describe the software in English-like sentences of domain
specific language.

The application’s behaviour is described by scenarios, and those scenarios are turned into automated test suites with
tools such as Behat.

Sylius behaviours are fully covered with Behat scenarios. There are more than 1200 scenarios in the Sylius suite, and
if you want to understand some aspects of Sylius better, or are wondering how to configure something, we strongly
recommend reading them. They can be found in the features/ directory of the Sylius/Sylius repository.

6.1.1 Basic Usage

The best way of understanding how things work in detail is showing and analyzing examples, that is why this section
gathers all the knowledge from the previous chapters. Let’s assume that we are going to implement the functionality
of managing countries in our system. Now let us show you the flow.

Describing features

Let’s start with writing our feature file, which will contain answers to the most important questions: Why (ben-
efit, business value), who (actor using the feature) and what (the feature itself). It should also include scenarios,
which serve as examples of how things supposed to work. Let’s have a look at the features/addressing/
managing_countries/adding_country.feature file.

Scenario:

497

Sylius

@managing_countries
Feature: Adding a new country

In order to sell my goods to different countries
As an Administrator
I want to add a new country to the store

Background:
Given I am logged in as an administrator

@ui
Scenario: Adding country

When I want to add a new country
And I choose "United States"
And I add it
Then I should be notified that it has been successfully created
And the country "United States" should appear in the store

Pay attention to the form of these sentences. From the developer point of view they are hiding the details of the
feature’s implementation. Instead of describing “When I click on the select box And I choose United States from the
dropdown Then I should see the United States country in the table” - we are using sentences that are less connected
with the implementation, but more focused on the effects of our actions. A side effect of such approach is that it results
in steps being really generic, therefore if we want to add another way of testing this feature for instance in the domain
or api context, it will be extremely easy to apply. We just need to add a different tag (in this case “@domain”) and
of course implement the proper steps in the domain context of our system. To be more descriptive let’s imagine that
we want to check if a country is added properly in two ways. First we are checking if the adding works via frontend,
so we are implementing steps that are clicking, opening pages, filling fields on forms and similar, but also we want to
check this action regardlessly of the frontend, for that we need the domain, which allows us to perform actions only
on objects.

Choosing a correct suite

After we are done with a feature file, we have to create a new suite for it. At the beginning
we have decided that it will be a frontend/user interface feature, that is why we are placing it in
“etc/behat/suites/ui/addressing/managing_countries.yml”.

default:
suites:

ui_managing_countries:
contexts_services:

- sylius.behat.context.hook.doctrine_orm
This service is responsible for clearing database before each

→˓scenario,
so that only data from the current and its background is available.

- sylius.behat.context.transform.country
- sylius.behat.context.transform.shared_storage
The transformer contexts services are responsible for all the

→˓transformations of data in steps:
For instance "And the country "France" should appear in the store"

→˓transforms "(the country "France")" to a proper Country object, which is from now
→˓on available in the scope of the step.

- sylius.behat.context.setup.geographical
- sylius.behat.context.setup.security
The setup contexts here are preparing the background, adding

→˓available countries and users or administrators.
(continues on next page)

498 Chapter 6. The BDD Guide

Sylius

(continued from previous page)

These contexts have steps like "I am logged in as an administrator"
→˓already implemented.

Lights, Camera, Action!
- sylius.behat.context.ui.admin.managing_countries
- sylius.behat.context.ui.admin.notification
Those contexts are essential here we are placing all action steps

→˓like "When I choose "France" and I add it Then I should ne notified that...".
filters:

tags: "@managing_countries && @ui"

A very important thing that is done here is the configuration of tags, from now on Behat will be searching for
all your features tagged with @managing_countries and your scenarios tagged with @ui. Second thing is
contexts_services: in this section we will be placing all our services with step implementation.

We have mentioned with the generic steps we can easily switch our testing context to @domain. Have a look how it
looks:

default:
suites:

domain_managing_countries:
contexts_services:

- sylius.behat.context.hook.doctrine_orm

- sylius.behat.context.transform.country
- sylius.behat.context.transform.shared_storage

- sylius.behat.context.setup.geographical
- sylius.behat.context.setup.security

- sylius.behat.context.domain.admin.managing_countries # Domain step
→˓implementation.

filters:
tags: "@managing_countries && @domain"

We are almost finished with the suite configuration. Now we need to register our first Behat context as a service, but
beforehand we need

Registering Pages

The page object approach allows us to hide all the detailed interaction with ui (html, javascript, css) inside.

We have three kinds of pages:

• Page - First layer of our pages it knows how to interact with DOM objects. It has a method
->getUrl(array $urlParameters) where you can define a raw url to open it.

• SymfonyPage - This page extends the Page. It has a router injected so that the ->getUrl() method
generates a url from the route name which it gets from the ->getRouteName() method.

• Base Crud Pages (IndexPage, CreatePage, UpdatePage) - These pages extend SymfonyPage and they are
specific to the Sylius resources. They have a resource name injected and therefore they know about the
route name.

There are two ways to manipulate UI - by using ->getDocument() or ->getElement('your_element').
First method will return a DocumentElement which represents an html structure of the currently opened page,

6.1. The BDD Guide 499

Sylius

second one is a bit more tricky because it uses the ->getDefinedElements() method and it will return a
NodeElement which represents only the restricted html structure.

Usage example of ->getElement('your_element') and ->getDefinedElements methods.

<?php

class CreatePage extends SymfonyPage implements CreatePageInterface
{

// This method returns a simple associative array, where the key is the name of
→˓your element and the value is its locator.

protected function getDefinedElements()
{

return array_merge(parent::getDefinedElements(), [
'provinces' => '#sylius_country_provinces',

]);
}

// By default it will assume that your locator is css.
// Example with xpath.
protected function getDefinedElements()
{

return array_merge(parent::getDefinedElements(), [
'provinces' => ['xpath' => '//*[contains(@class, "provinces")]'] // Now

→˓your value is an array where key is your locator type.
]);

}

// Like that you can easily manipulate your page elements.
public function addProvince(ProvinceInterface $province)
{

$provinceSelectBox = $this->getElement('provinces');

$provinceSelectBox->selectOption($province->getName());
}

}

Let’s get back to our main example and analyze our scenario. We have steps like “When I choose “France” And I add
it Then I should be notified that it has been successfully created And the country “France” should appear in the store”.

<?php

namespace Sylius\Behat\Page\Admin\Country;

use Sylius\Behat\Page\Admin\Crud\CreatePage as BaseCreatePage;

class CreatePage extends BaseCreatePage implements CreatePageInterface
{

/**
* @param string $name

*/
public function chooseName($name)
{

$this->getDocument()->selectFieldOption('Name', $name);
}

public function create()
{

(continues on next page)

500 Chapter 6. The BDD Guide

Sylius

(continued from previous page)

$this->getDocument()->pressButton('Create');
}

}

<? php

namespace Sylius\Behat\Page\Admin\Country;

use Sylius\Behat\Page\Admin\Crud\IndexPage as BaseIndexPage;

class IndexPage extends BaseIndexPage implements IndexPageInterface
{

/**
* @return bool

*/
public function isSingleResourceOnPage(array $parameters)
{

try {
$rows = $this->tableAccessor->getRowsWithFields($this->getElement('table

→˓'), $parameters);
// Table accessor is a helper service which is responsible for all html

→˓table operations.

return 1 === count($rows);
} catch (ElementNotFoundException $exception) { // Table accessor throws this

→˓exception when cannot find table element on page.
return false;

}
}

}

Warning: There is one small gap in this concept - PageObjects is not a concrete instance of the currently opened
page, they only mimic its behaviour (dummy pages). This gap will be more understandable on the below code
example.

<?php

// Of course this is only to illustrate this gap.

class HomePage
{

// In this context on home page sidebar you have for example weather information
→˓in selected countries.

public function readWeather()
{

return $this->getElement('sidebar')->getText();
}

protected function getDefinedElements()
{

return ['sidebar' => ['css' => '.sidebar']]
}

(continues on next page)

6.1. The BDD Guide 501

Sylius

(continued from previous page)

protected function getUrl()
{

return 'http://your_domain.com';
}

}

class LeagueIndexPage
{

// In this context you have for example football match results.
public function readMatchResults()
{

return $this->getElement('sidebar')->getText();
}

protected function getDefinedElements()
{

return ['sidebar' => ['css' => '.sidebar']]
}

protected function getUrl()
{

return 'http://your_domain.com/leagues/'
}

}

final class GapContext implements Context
{

private $homePage;
private $leagueIndexPage;

/**
* @Given I want to be on Homepage

*/
public function iWantToBeOnHomePage() // After this method call we will be on

→˓"http://your_domain.com".
{

$this->homePage->open(); //When we add @javascript tag we can actually see
→˓this thanks to selenium.

}

/**
* @Then I want to see the sidebar and get information about the weather in France

*/
public function iWantToReadSideBarOnHomePage($someInformation) // Still "http://

→˓your_domain.com".
{

$someInformation === $this->leagueIndexPage->readMatchResults() // This
→˓returns true, but wait a second we are on home page (dummy pages).

$someInformation === $this->homePage->readWeather() // This also returns true.
}

}

502 Chapter 6. The BDD Guide

Sylius

Registering contexts

As it was shown in the previous section we have registered a lot of contexts, so we will show you only some of the
steps implementation.

Scenario:

Given I want to add a new country
And I choose "United States"
And I add it
Then I should be notified that it has been successfully created
And the country "United States" should appear in the store

Let’s start with essential one ManagingCountriesContext

Ui contexts

<?php

namespace Sylius\Behat\Context\Ui\Admin

final class ManagingCountriesContext implements Context
{

/**
* @var IndexPageInterface

*/
private $indexPage;

/**
* @var CreatePageInterface

*/
private $createPage;

/**
* @var UpdatePageInterface

*/
private $updatePage;

/**
* @param IndexPageInterface $indexPage

* @param CreatePageInterface $createPage

* @param UpdatePageInterface $updatePage

*/
public function __construct(

IndexPageInterface $indexPage,
CreatePageInterface $createPage,
UpdatePageInterface $updatePage

) {
$this->indexPage = $indexPage;
$this->createPage = $createPage;
$this->updatePage = $updatePage;

}

/**
* @Given I want to add a new country

*/

(continues on next page)

6.1. The BDD Guide 503

Sylius

(continued from previous page)

public function iWantToAddNewCountry()
{

$this->createPage->open(); // This method will send request.
}

/**
* @When I choose :countryName

*/
public function iChoose($countryName)
{

$this->createPage->chooseName($countryName);
// Great benefit of using page objects is that we hide html manipulation

→˓behind a interfaces so we can inject different CreatePage which implements
→˓CreatePageInterface

// And have different html elements which allows for example chooseName(
→˓$countryName).

}

/**
* @When I add it

*/
public function iAddIt()
{

$this->createPage->create();
}

/**
* @Then /^the (country "([^"]+)") should appear in the store$/

*/
public function countryShouldAppearInTheStore(CountryInterface $country) // This

→˓step use Country transformer to get Country object.
{

$this->indexPage->open();

//Webmozart assert library.
Assert::true(

$this->indexPage->isSingleResourceOnPage(['code' => $country->getCode()]),
sprintf('Country %s should exist but it does not', $country->getCode())

);
}

}

<?php

namespace Sylius\Behat\Context\Ui\Admin

final class NotificationContext implements Context
{

/**
* @var NotificationCheckerInterface

*/
private $notificationChecker;
// This is a helper service which give access to proper notification elements.

/**
* @param NotificationCheckerInterface $notificationChecker

(continues on next page)

504 Chapter 6. The BDD Guide

Sylius

(continued from previous page)

*/
public function __construct(NotificationCheckerInterface $notificationChecker)
{

$this->notificationChecker = $notificationChecker;
}

/**
* @Then I should be notified that it has been successfully created

*/
public function iShouldBeNotifiedItHasBeenSuccessfullyCreated()
{

$this->notificationChecker->checkNotification('has been successfully created.
→˓', NotificationType::success());

}
}

Transformer contexts

<?php

namespace Sylius\Behat\Context\Transform;

final class CountryContext implements Context
{

/**
* @var CountryNameConverterInterface

*/
private $countryNameConverter;

/**
* @var RepositoryInterface

*/
private $countryRepository;

/**
* @param CountryNameConverterInterface $countryNameConverter

* @param RepositoryInterface $countryRepository

*/
public function __construct(

CountryNameConverterInterface $countryNameConverter,
RepositoryInterface $countryRepository

) {
$this->countryNameConverter = $countryNameConverter;
$this->countryRepository = $countryRepository;

}

/**
* @Transform /^country "([^"]+)"$/

* @Transform /^"([^"]+)" country$/

*/
public function getCountryByName($countryName) // Thanks to this method we got in

→˓our ManagingCountries an Country object.
{

$countryCode = $this->countryNameConverter->convertToCode($countryName);

(continues on next page)

6.1. The BDD Guide 505

Sylius

(continued from previous page)

$country = $this->countryRepository->findOneBy(['code' => $countryCode]);

Assert::notNull(
$country,
'Country with name %s does not exist'

);

return $country;
}

}

<?php

namespace Sylius\Behat\Context\Ui\Admin;

use Sylius\Behat\Page\Admin\Country\UpdatePageInterface;

final class ManagingCountriesContext implements Context
{

/**
* @var UpdatePageInterface

*/
private $updatePage;

/**
* @param UpdatePageInterface $updatePage

*/
public function __construct(UpdatePageInterface $updatePage)
{

$this->updatePage = $updatePage;
}

/**
* @Given /^I want to create a new province in (country "[^"]+")$/

*/
public function iWantToCreateANewProvinceInCountry(CountryInterface $country)
{

$this->updatePage->open(['id' => $country->getId()]);

$this->updatePage->clickAddProvinceButton();
}

}

<?php

namespace Sylius\Behat\Context\Transform;

final class ShippingMethodContext implements Context
{

/**
* @var ShippingMethodRepositoryInterface

*/
private $shippingMethodRepository;

/**
* @param ShippingMethodRepositoryInterface $shippingMethodRepository

(continues on next page)

506 Chapter 6. The BDD Guide

Sylius

(continued from previous page)

*/
public function __construct(ShippingMethodRepositoryInterface

→˓$shippingMethodRepository)
{

$this->shippingMethodRepository = $shippingMethodRepository;
}

/**
* @Transform :shippingMethod

*/
public function getShippingMethodByName($shippingMethodName)
{

$shippingMethod = $this->shippingMethodRepository->findOneByName(
→˓$shippingMethodName);

if (null === $shippingMethod) {
throw new \Exception('Shipping method with name "'.$shippingMethodName.'"

→˓does not exist');
}

return $shippingMethod;
}

}

<?php

namespace Sylius\Behat\Context\Ui\Admin;

use Sylius\Behat\Page\Admin\ShippingMethod\UpdatePageInterface;

final class ShippingMethodContext implements Context
{

/**
* @var UpdatePageInterface

*/
private $updatePage;

/**
* @param UpdatePageInterface $updatePage

*/
public function __construct(UpdatePageInterface $updatePage)
{

$this->updatePage = $updatePage;
}

/**
* @Given I want to modify a shipping method :shippingMethod

*/
public function iWantToModifyAShippingMethod(ShippingMethodInterface

→˓$shippingMethod)
{

$this->updatePage->open(['id' => $shippingMethod->getId()]);
}

}

6.1. The BDD Guide 507

Sylius

Warning: Contexts should have single responsibility and this segregation (Setup, Transformer, Ui, etc. . .) is not
accidental. We shouldn’t create objects in transformer contexts.

Setup contexts

For setup context we need different scenario with more background steps and all preparing scene steps. Editing
scenario will be great for this example:

Scenario:

Given the store has disabled country "France"
And I want to edit this country
When I enable it
And I save my changes
Then I should be notified that it has been successfully edited
And this country should be enabled

<?php

namespace Sylius\Behat\Context\Setup;

final class GeographicalContext implements Context
{

/**
* @var SharedStorageInterface

*/
private $sharedStorage;

/**
* @var FactoryInterface

*/
private $countryFactory;

/**
* @var RepositoryInterface

*/
private $countryRepository;

/**
* @var CountryNameConverterInterface

*/
private $countryNameConverter;

/**
* @param SharedStorageInterface $sharedStorage

* @param FactoryInterface $countryFactory

* @param RepositoryInterface $countryRepository

* @param CountryNameConverterInterface $countryNameConverter

*/
public function __construct(

SharedStorageInterface $sharedStorage,
FactoryInterface $countryFactory,
RepositoryInterface $countryRepository,
CountryNameConverterInterface $countryNameConverter

) {

(continues on next page)

508 Chapter 6. The BDD Guide

Sylius

(continued from previous page)

$this->sharedStorage = $sharedStorage;
$this->countryFactory = $countryFactory;
$this->countryRepository = $countryRepository;
$this->countryNameConverter = $countryNameConverter;

}

/**
* @Given /^the store has disabled country "([^"]*)"$/

*/
public function theStoreHasDisabledCountry($countryName) // This method save

→˓country in data base.
{

$country = $this->createCountryNamed(trim($countryName));
$country->disable();

$this->sharedStorage->set('country', $country);
// Shared storage is an helper service for transferring objects between steps.
// There is also SharedStorageContext which use this helper service to

→˓transform sentences like "(this country), (it), (its), (theirs)" into Country
→˓Object.

$this->countryRepository->add($country);
}

/**
* @param string $name

*
* @return CountryInterface

*/
private function createCountryNamed($name)
{

/** @var CountryInterface $country */
$country = $this->countryFactory->createNew();
$country->setCode($this->countryNameConverter->convertToCode($name));

return $country;
}

}

6.1.2 Introduction to containers

In order to provide support for defining contexts and pages in Behat container with dependencies from Symfony
application container, our service definitions may contain some extra features.

There are 3 available containers:

• behat (the default one) - the container which holds all Behat services, its extensions services, our contexts,
pages and helper services used by them

• symfony - the container which holds all the services defined in the application, the services retrieved from this
container are isolated between scenarios

• symfony_shared - the container which holds all the services defined in the application, created only once,
the services retrieved from this container are not isolated between scenarios

Right now, you can only inject services from foreign containers into the default containers. To do so, prepend service
id with __CONTAINERNAME__.:

6.1. The BDD Guide 509

Sylius

<service id="service.id" class="Class">
<argument type="service" id="behat.service.id" />
<argument type="service" id="__behat__.another.behat.service.id" />
<argument type="service" id="__symfony__.symfony.service.id" />
<argument type="service" id="__symfony_shared__.shared.symfony.service.id" />

</service>

6.1.3 How to add a new context?

To add a new context to Behat container it is needed to add a service in to one of a following files cli.xml/domain.
xml/hook.xml/setup.xml/transform.xml/ui.xml in src/Sylius/Behat/Resources/config/
services/contexts/ folder:

<service id="sylius.behat.context.CONTEXT_CATEGORY.CONTEXT_NAME" class="%sylius.behat.
→˓context.CONTEXT_CATEGORY.CONTEXT_NAME.class%">

<tag name="fob.context_service" />
</service>

Then you can use it in your suite configuration:

default:
suites:

SUITE_NAME:
contexts_services:

- "sylius.behat.context.CONTEXT_CATEGORY.CONTEXT_NAME"

filters:
tags: "@SUITE_TAG"

Note: The context categories are usually one of hook, setup, ui and domain and, as you can guess, they are
corresponded to files name mentioned above.

6.1.4 How to add a new page object?

Sylius uses a solution inspired by SensioLabs/PageObjectExtension, which provides an infrastructure to
create pages that encapsulates all the user interface manipulation in page objects.

To create a new page object it is needed to add a service in Behat container in etc/behat/services/pages.
xml file:

<service id="sylius.behat.page.PAGE_NAME" class="%sylius.behat.page.PAGE_NAME.class%"
→˓parent="sylius.behat.symfony_page" public="false" />

Note: There are some boilerplates for common pages, which you may use. The available par-
ents are sylius.behat.page (Sylius\Behat\Page\Page) and sylius.behat.symfony_page
(Sylius\Behat\Page\SymfonyPage). It is not required for a page to extend any class as pages are POPOs
(Plain Old PHP Objects).

Then you will need to add that service as a regular argument in context service.

The simplest Symfony-based page looks like:

510 Chapter 6. The BDD Guide

Sylius

use Sylius\Behat\Page\SymfonyPage;

class LoginPage extends SymfonyPage
{

public function getRouteName()
{

return 'sylius_user_security_login';
}

}

6.1.5 How to define a new suite?

To define a new suite it is needed to create a suite configuration file in a one of cli/domain/ui directory in-
side src/Sylius/Behat/Resources/config/suites. Then register that file in src/Sylius/Behat/
Resources/config/suites.yml.

6.1.6 How to use transformers?

Behat provides many awesome features, and one of them are definitely transformers. They can be used to transform
(usually widely used) parts of steps and return some values from them, to prevent unnecessary duplication in many
steps’ definitions.

Basic transformer

Example is always the best way to clarify, so let’s look at this:

/**
* @Transform /^"([^"]+)" shipping method$/

* @Transform /^shipping method "([^"]+)"$/

* @Transform :shippingMethod

*/
public function getShippingMethodByName($shippingMethodName)
{

$shippingMethod = $this->shippingMethodRepository->findOneByName(
→˓$shippingMethodName);

Assert::notNull(
$shippingMethod,
sprintf('Shipping method with name "%s" does not exist', $shippingMethodName)

);

return $shippingMethod;
}

This transformer is used to return ShippingMethod object from proper repository using it’s name. It also throws
exception if such a method does not exist. It can be used in plenty of steps, that have shipping method name in it.

Note: In the example above a Webmozart assertion library was used, to assert a value and throw an exception if
needed.

But how to use it? It is as simple as that:

6.1. The BDD Guide 511

https://github.com/webmozart/assert

Sylius

/**
* @Given /^(shipping method "[^"]+") belongs to ("[^"]+" tax category)$/

*/
public function shippingMethodBelongsToTaxCategory(

ShippingMethodInterface $shippingMethod,
TaxCategoryInterface $taxCategory

) {
// some logic here

}

If part of step matches transformer definition, it should be surrounded by parenthesis to be handled as whole expression.
That’s it! As it is shown in the example, many transformers can be used in the same step definition. Is it all? No! The
following example will also work like charm:

/**
* @When I delete shipping method :shippingMethod

* @When I try to delete shipping method :shippingMethod

*/
public function iDeleteShippingMethod(ShippingMethodInterface $shippingMethod)
{

// some logic here
}

It is worth to mention, that in such a case, transformer would be matched depending on a name after ‘:’ sign. So many
transformes could be used when using this signature also. This style gives an opportunity to write simple steps with
transformers, without any regex, which would boost context readability.

Note: Transformer definition does not have to be implemented in the same context, where it is used. It allows to share
them between many different contexts.

Transformers implemented in Sylius

Specified

There are plenty of transformers already implemented in Sylius. Most of them, are returns specific resources from
theirs repository, for example:

• tax category "Fruits" -> find tax category in their repository with name “Fruits”

• "Chinese banana" variant of product "Banana" -> find variant of specific product

etc. You’re free to use them in your own behat scenarios.

Note: All transformers definitions are currently kept in Sylius\Behat\Context\Transform namespace.

Warning: Remember to include contexts with transformers in custom suite to be able to use them!

512 Chapter 6. The BDD Guide

Sylius

Generic

Moreover, there are also some more generic transformers, that could be useful in many different cases. They are now
placed in two contexts: LexicalContext and SharedStorageContext. What are they so awesome? Let’s
describe them one by one:

LexicalContext

• @Transform /^"(?:C|£|\$)((?:\d+\.)?\d+)"$/ -> tricky transformer used to parse price string
with currency into integer (used to represent price in Sylius). It is used in steps like this promotion gives
"C30.00" fixed discount to every order

• @Transform /^"((?:\d+\.)?\d+)%"$/ -> similar one, transforming percentage string into float (ex-
ample: this promotion gives "10%" percentage discount to every order)

SharedStorageContext

Note: SharedStorage is kind of container used to keep objects, which can be shared between steps. It can be
used, for example, to keep newly created promotion, to use its name in checking existence step.

• @Transform /^(it|its|theirs)$/ -> amazingly useful transformer, that returns last resource saved
in SharedStorage. It allows to simplify many steps used after creation/update (and so on) actions. Ex-
ample: instead of writing When I create "Wade Wilson" customer/Then customer "Wade
Wilson" should be registered just write When I create "Wade Wilson" customer/
Then it should be registered

• @Transform /^(?:this|that|the) ([^"]+)$/ -> similar to previous one, but returns resource
saved with specific key, for example this promotion will return resource saved with promotion key
in SharedStorage

• Basic Usage

• Introduction to containers

• How to add a new context?

• How to add a new page object?

• How to define a new suite?

• How to use transformers?

• Basic Usage

• Introduction to containers

• How to add a new context?

• How to add a new page object?

• How to define a new suite?

• How to use transformers?

6.1. The BDD Guide 513

Sylius

514 Chapter 6. The BDD Guide

CHAPTER 7

The Contribution Guide

The Contribution Guide to Sylius.

7.1 The Contribution Guide

Note: This section is based on the great Symfony documentation.

7.1.1 Install to Contribute

Before you can start contributing to Sylius code or documentation, you should install Sylius locally.

To install Sylius main application from our main repository and contribute, run the following command:

$ composer create-project sylius/sylius

This will create a new sylius project in the sylius directory. When all the dependencies are installed, you’ll be asked
to fill the parameters.yml file via an interactive script. Please follow the steps. If you hit enter, the default values
will be loaded.

Creating the "app/config/parameters.yml" file
Some parameters are missing. Please provide them.
database_driver (pdo_mysql): # - provide a database driver that you are willing to use
database_host (127.0.0.1):
database_port (null):
database_name (sylius): # - you should rename the database to for instance `my_custom_
→˓application_name`
database_user (root): # - provide the database user and password
database_password (null): 1234
mailer_transport (smtp): # - if you will be testing e-mails please provide here your
→˓test account data, use `gmail` as transport for example.

(continues on next page)

515

http://symfony.com/doc/current

Sylius

(continued from previous page)

mailer_host (127.0.0.1):
mailer_user (null): # - your test email
mailer_password (null): # - and password
secret (EDITME):

After everything is in place, run the following commands:

$ cd sylius # Move to the newly created directory
$ php bin/console sylius:install

The sylius:install command actually runs several other commands, which will ask you some questions and
check if everything is setup to run Sylius properly.

This package contains our main Sylius development repository, with all the components and bundles in the src/
folder.

In order to see a fully functional frontend you will need to install its assets.

Sylius already has a gulpfile.js, therefore you just need to get Gulp using Node.js.

Having Node.js installed go to your project directory and run:

$ yarn install

And now you can use gulp for installing views, by just running a simple command:

$ yarn run gulp

For the contributing process questions, please refer to the Contributing Guide that comes up in the following chapters:

Contributing Code

Backward Compatibility Promise

Sylius follows a versioning strategy called Semantic Versioning. It means that only major releases include BC breaks,
whereas minor releases include new features without breaking backwards compatibility.

Since Sylius is based on Symfony, our BC promise extends Symfony’s Backward Compatibility Promise with a few
new rules and exceptions stated in this document.

Minor and patch releases

Patch releases (such as 1.0.x, 1.1.x, etc.) do not require any additional work apart from cleaning the Symfony cache.

Minor releases (such as 1.1.0, 1.2.0, etc.) require to run database migrations.

Code covered

This BC promise applies to all of Sylius’ PHP code except for:

• code tagged with @internal tags

• event listeners

• model and repository interfaces

516 Chapter 7. The Contribution Guide

http://gulpjs.com/
https://nodejs.org/en/download/
http://docs.sylius.com/en/latest/contributing/index.html
http://semver.org/
https://symfony.com/doc/current/contributing/code/bc.html

Sylius

• PHPUnit tests (located at tests/, src/**/Tests/)

• PHPSpec tests (located at src/**/spec/)

• Behat tests (located at src/Sylius/Behat/)

Additional rules

Models & model interfaces

In order to fulfill the constant Sylius’ need to evolve, model interfaces are excluded from this BC promise. Methods
may be added to the interface, but backwards compatibility is promised as long as your custom model extends the one
from Sylius, which is true for most cases.

Repositories & repository interfaces

Following the reasoning same as above and due to technological constraints, repository interfaces are also excluded
from this BC promise.

Event listeners

They are excluded from this BC promise, but they should be as simple as possible and always call another service.
Behaviour they’re providing (the end result) is still included in BC promise.

Routing

The currently present routes cannot have their name changed, but optional parameters might be added to them. All the
new routes will start with sylius_ prefix in order to avoid conflicts.

Services

Services names cannot change, but new services might be added with sylius. prefix.

Templates

Neither template events, block or templates themselves cannot be deleted or renamed.

Reporting a Bug

Whenever you find a bug in Sylius, we kindly ask you to report it. It helps us make a better e-commerce solution for
PHP.

Caution: If you think you’ve found a security issue, please use the special procedure instead.

Before submitting a bug:

• Double-check the official documentation to see if you’re not misusing the framework;

7.1. The Contribution Guide 517

http://docs.sylius.com

Sylius

• Ask for assistance on stackoverflow.com or on the #sylius IRC channel if you’re not sure your issue is really a
bug.

If your problem definitely looks like a bug, report it using the official bug tracker and follow some basic rules:

• Use the title field to clearly describe the issue;

• Describe the steps needed to reproduce the bug with short code examples (providing a Behat scenario that
illustrates the bug is best);

• Give as much detail as possible about your environment (OS, PHP version, Symfony version, Sylius version,
enabled extensions, . . .);

• (optional) Attach a patch.

Submitting a Patch

Patches are the best way to provide a bug fix or to propose enhancements to Sylius.

Step 1: Setup your Environment

Install the Software Stack

Before working on Sylius, set a Symfony friendly environment up with the following software:

• Git

• PHP version 7.1 or above

• MySQL

Configure Git

Set your user information up with your real name and a working email address:

$ git config --global user.name "Your Name"
$ git config --global user.email "you@example.com"

Tip: If you are new to Git, you are highly recommended to read the excellent and free ProGit book.

Tip: If your IDE creates configuration files inside the directory of the project, you can use global .gitignore file
(for all projects) or .git/info/exclude file (per project) to ignore them. See Github’s documentation.

Tip: Windows users: when installing Git, the installer will ask what to do with line endings, and will suggest replacing
all LF with CRLF. This is the wrong setting if you wish to contribute to Sylius. Selecting the as-is method is your
best choice, as Git will convert your line feeds to the ones in the repository. If you have already installed Git, you can
check the value of this setting by typing:

$ git config core.autocrlf

518 Chapter 7. The Contribution Guide

http://stackoverflow.com
irc://irc.freenode.net/sylius
https://github.com/Sylius/Sylius/issues
http://git-scm.com/book
https://help.github.com/articles/ignoring-files

Sylius

This will return either “false”, “input” or “true”; “true” and “false” being the wrong values. Change it to “input” by
typing:

$ git config --global core.autocrlf input

Replace –global by –local if you want to set it only for the active repository

Get the Sylius Source Code

Get the Sylius source code:

• Create a GitHub account and sign in;

• Fork the Sylius repository (click on the “Fork” button);

• After the “forking action” has completed, clone your fork locally (this will create a Sylius directory):

$ git clone git@github.com:USERNAME/Sylius.git

• Add the upstream repository as a remote:

$ cd sylius
$ git remote add upstream git://github.com/Sylius/Sylius.git

Step 2: Work on your Patch

The License

Before you start, you must know that all patches you are going to submit must be released under the MIT license,
unless explicitly specified in your commits.

Choose the right Base Branch

Before starting to work on a patch, you must determine on which branch you need to work. It will be:

• 1.0 or 1.1, if you are fixing a bug for an existing feature or want to make a change that falls into the list of
acceptable changes in patch versions

• master, if you are adding a new feature.

Note: All bug fixes merged into the 1.0 and 1.1 maintenance branches are also merged into master on a regular
basis.

Create a Topic Branch

Each time you want to work on a patch for a bug or on an enhancement, create a topic branch, starting from the
previously chosen base branch:

$ git checkout -b BRANCH_NAME master

7.1. The Contribution Guide 519

https://github.com/signup/free
https://github.com/Sylius/Sylius

Sylius

Tip: Use a descriptive name for your branch (issue_XXX where XXX is the GitHub issue number is a good
convention for bug fixes).

The above checkout command automatically switches the code to the newly created branch (check the branch you are
working on with git branch).

Work on your Patch

Work on the code as much as you want and commit as much as you want; but keep in mind the following:

• Practice BDD, which is the development methodology we use at Sylius;

• Read about the Sylius conventions and follow the coding standards (use git diff --check to check for
trailing spaces – also read the tip below);

• Do atomic and logically separate commits (use the power of git rebase to have a clean and logical history);

• Squash irrelevant commits that are just about fixing coding standards or fixing typos in your own code;

• Never fix coding standards in some existing code as it makes the code review more difficult (submit CS fixes as
a separate patch);

• In addition to this “code” pull request, you must also update the documentation when appropriate. See more in
contributing documentation section.

• Write good commit messages (see the tip below).

Tip: A good commit message is composed of a summary (the first line), optionally followed by a blank line and
a more detailed description. The summary should start with the Component you are working on in square brackets
([Cart], [Taxation], . . .). Use a verb (fixed ..., added ..., . . .) to start the summary and don’t add a
period at the end.

Prepare your Patch for Submission

When your patch is not about a bug fix (when you add a new feature or change an existing one for instance), it must
also include the following:

• An explanation of the changes in the relevant CHANGELOG file(s) (the [BC BREAK] or the [DEPRECATION]
prefix must be used when relevant);

• An explanation on how to upgrade an existing application in the relevant UPGRADE file(s) if the changes break
backward compatibility or if you deprecate something that will ultimately break backward compatibility.

Step 3: Submit your Patch

Whenever you feel that your patch is ready for submission, follow the following steps.

Rebase your Patch

Before submitting your patch, update your branch (needed if it takes you a while to finish your changes):

If you are basing on the master branch:

520 Chapter 7. The Contribution Guide

Sylius

$ git checkout master
$ git fetch upstream
$ git merge upstream/master
$ git checkout BRANCH_NAME
$ git rebase master

If you are basing on the 1.0 branch:

$ git checkout 1.0
$ git fetch upstream
$ git merge upstream/1.0
$ git checkout BRANCH_NAME
$ git rebase 1.0

When doing the rebase command, you might have to fix merge conflicts. git status will show you the un-
merged files. Resolve all the conflicts, then continue the rebase:

$ git add ... # add resolved files
$ git rebase --continue

Push your branch remotely:

$ git push --force-with-lease origin BRANCH_NAME

Make a Pull Request

Warning: Please remember that bug fixes must be submitted against the 1.0 branch, but features and depreca-
tions against the master branch. Just accordingly to which branch you chose as the base branch before.

You can now make a pull request on the Sylius/Sylius GitHub repository.

To ease the core team work, always include the modified components in your pull request message, like in:

[Cart] Fixed something
[Taxation] [Addressing] Added something

The pull request description must include the following checklist at the top to ensure that contributions may be re-
viewed without needless feedback loops and that your contributions can be included into Sylius as quickly as possible:

| Q | A
| --------------- | -----
| Branch? | 1.0, 1.1 or master
| Bug fix? | no/yes
| New feature? | no/yes
| BC breaks? | no/yes
| Deprecations? | no/yes
| Related tickets | fixes #X, partially #Y, mentioned in #Z
| License | MIT

An example submission could now look as follows:

| Q | A
| --------------- | -----

(continues on next page)

7.1. The Contribution Guide 521

Sylius

(continued from previous page)

| Branch? | 1.0
| Bug fix? | yes
| New feature? | no
| BC breaks? | no
| Deprecations? | no
| Related tickets | fixes #12
| License | MIT

The whole table must be included (do not remove lines that you think are not relevant).

Some answers to the questions trigger some more requirements:

• If you answer yes to “Bug fix?”, check if the bug is already listed in the Sylius issues and reference it/them in
“Related tickets”;

• If you answer yes to “New feature?”, you should submit a pull request to the documentation;

• If you answer yes to “BC breaks?”, the patch must contain updates to the relevant CHANGELOG and UPGRADE
files;

• If you answer yes to “Deprecations?”, the patch must contain updates to the relevant CHANGELOG and
UPGRADE files;

If some of the previous requirements are not met, create a todo-list and add relevant items:

- [] Fix the specs as they have not been updated yet
- [] Submit changes to the documentation
- [] Document the BC breaks

If the code is not finished yet because you don’t have time to finish it or because you want early feedback on your
work, add an item to todo-list:

- [] Finish the feature
- [] Gather feedback for my changes

As long as you have items in the todo-list, please prefix the pull request title with “[WIP]”.

In the pull request description, give as much details as possible about your changes (don’t hesitate to give code
examples to illustrate your points). If your pull request is about adding a new feature or modifying an existing one,
explain the rationale for the changes. The pull request description helps the code review.

Rework your Patch

Based on the feedback on the pull request, you might need to rework your patch. Before re-submitting the patch,
rebase with your base branch (master or 1.0), don’t merge; and force the push to the origin:

$ git rebase -f upstream/master
$ git push --force-with-lease origin BRANCH_NAME

or

$ git rebase -f upstream/1.0
$ git push --force-with-lease origin BRANCH_NAME

Note: When doing a push --force-with-lease, always specify the branch name explicitly to avoid messing
other branches in the repo (--force-with-lease tells Git that you really want to mess with things so do it

522 Chapter 7. The Contribution Guide

Sylius

carefully).

Often, Sylius team members will ask you to “squash” your commits. This means you will convert many commits to
one commit. To do this, use the rebase command:

$ git rebase -i upstream/master
$ git push --force-with-lease origin BRANCH_NAME

or

$ git rebase -i upstream/1.0
$ git push --force-with-lease origin BRANCH_NAME

After you type this command, an editor will popup showing a list of commits:

pick 1a31be6 first commit
pick 7fc64b4 second commit
pick 7d33018 third commit

To squash all commits into the first one, remove the word pick before the second and the last commits, and replace
it by the word squash or just s. When you save, Git will start rebasing, and if successful, will ask you to edit the
commit message, which by default is a listing of the commit messages of all the commits. When you are finished,
execute the push command.

Security Issues

This document explains how Sylius issues are handled by the Sylius core team.

Reporting a Security Issue

If you think that you have found a security issue in Sylius, don’t use the bug tracker and do not post it publicly. Instead,
all security issues must be sent to security [at] sylius.com. Emails sent to this address are forwarded to the Sylius
core team members.

Resolving Process

For each report, we first try to confirm the vulnerability. When it is confirmed, the team works on a solution following
these steps:

1. Send an acknowledgement to the reporter;

2. Work on a patch;

3. Write a security announcement for the official Sylius blog about the vulnerability. This post should contain the
following information:

• a title that always include the “Security release” string;

• a description of the vulnerability;

• the affected versions;

• the possible exploits;

• how to patch/upgrade/workaround affected applications;

7.1. The Contribution Guide 523

http://sylius.com/blog

Sylius

• credits.

4. Send the patch and the announcement to the reporter for review;

5. Apply the patch to all maintained versions of Sylius;

6. Publish the post on the official Sylius blog;

7. Update the security advisory list (see below).

Note: Releases that include security issues should not be done on Saturday or Sunday, except if the vulnerability has
been publicly posted.

Note: While we are working on a patch, please do not reveal the issue publicly.

BDD Methodology

Note: This part of documentation is inspired by the official PHPSpec docs.

Sylius adopted the full-stack BDD methodology for its development processes.

According to Wikipedia:

“BDD is a software development process based on test-driven development (TDD). Behavior-driven de-
velopment combines the general techniques and principles of TDD with ideas from domain-driven design
and object-oriented analysis and design to provide software developers and business analysts with shared
tools and a shared process to collaborate on software development, with the aim of delivering software
that matters.”

Setting up Behat & PHPSpec

To run the entire suite of features and specs, including the ones that depend on external dependencies, Sylius needs
to be able to autoload them. By default, they are autoloaded from vendor/ under the main root directory (see
autoload.php.dist).

To install them all, use Composer:

Step 1: Get Composer

$ curl -s http://getcomposer.org/installer | php

Make sure you download composer.phar in the same folder where the composer.json file is located.

Step 2: Install vendors

$ php composer.phar install

Note: Note that the script takes some time (several minutes) to finish.

524 Chapter 7. The Contribution Guide

http://sylius.com/blog
http://en.wikipedia.org/wiki/Behavior-driven_development
http://getcomposer.org/
http://getcomposer.org/

Sylius

Note: If you don’t have curl installed, you can also just download the installer file manually at http:
//getcomposer.org/installer. Place this file into your project and then run:

$ php installer
$ php composer.phar install

Install Selenium2

Download Selenium server 3.4 here.

Create a VirtualHost

Add this VirtualHost configuration:

<VirtualHost *:80>
ServerName sylius-test.local

RewriteEngine On

DocumentRoot /var/www/sylius/web
<Directory /var/www/sylius/web>

Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
allow from all

</Directory>

RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f
RewriteRule ^(.*) %{DOCUMENT_ROOT}/app_test.php [QSA,L]

ErrorLog ${APACHE_LOG_DIR}/sylius-test-error.log

LogLevel warn

CustomLog ${APACHE_LOG_DIR}/sylius-test-access.log combined

</VirtualHost>

Update your /etc/hosts file to include the VirtualHost hostname:

127.0.0.1 sylius-test.local

Additionally, copy behat.yml.dist to behat.yml, edit base_url parameter to match your host:

default:
...
extensions:

Behat\MinkExtension\Extension:
...
base_url: http://sylius-test.local/app_test.php/

7.1. The Contribution Guide 525

http://getcomposer.org/installer
http://getcomposer.org/installer
http://docs.seleniumhq.org/download/

Sylius

Behat

We use Behat for StoryBDD and you should always write new scenarios when adding a feature, or update existing
stories to adapt Sylius to business requirements changes.

Sylius is an open source project, so the client is not clearly visible at first look. But they are here - the Sylius users.
We have our needs and Behat helps us understand and satisfy these needs.

Note: To be written.

You can launch Selenium by issuing the following command:

$ java -jar selenium-server-standalone-2.38.0.jar

Configure behat for Selenium:

default:
...
extensions:

Behat\MinkExtension\Extension:
default_session: selenium2
browser_name: firefox
base_url: http://sylius-test.local/app_test.php
selenium2:

capabilities: { "browser": "firefox", "version": "28"}

Run your scenario using the behat console:

$ bin/behat

PHPSpec

PHPSpec is a PHP toolset to drive emergent design by specification. It is not really a testing tool, but a design
instrument, which helps structuring the objects and how they work together.

Sylius approach is to always describe the behavior of the next object you are about to implement.

As an example, we’ll write a service, which updates product prices based on an external API. To initialize a new spec,
use the desc command.

We just need to tell PHPSpec we will be working on the PriceUpdater class.

$ bin/phpspec desc "Sylius\Bundle\CoreBundle\Pricing\PriceUpdater"
Specification for PriceUpdater created in spec.

What have we just done? PHPSpec has created the spec for us. You can navigate to the spec folder and see the spec
there:

<?php

namespace spec\Sylius\Bundle\CoreBundle\Pricing;

use PhpSpec\ObjectBehavior;
use Prophecy\Argument;

(continues on next page)

526 Chapter 7. The Contribution Guide

Sylius

(continued from previous page)

class PriceUpdaterSpec extends ObjectBehavior
{

function it_is_initializable()
{

$this->shouldHaveType('Sylius\Bundle\CoreBundle\Pricing\PriceUpdater');
}

}

The object behavior is made of examples. Examples are encased in public methods, started with it_. or its_.

PHPSpec searches for such methods in your specification to run. Why underscores for example names?
just_because_its_much_easier_to_read than someLongCamelCasingLikeThat.

Now, let’s write first example which will update the products price:

<?php

namespace spec\Sylius\Bundle\CoreBundle\Pricing;

use Acme\ApiClient;
use PhpSpec\ObjectBehavior;
use Prophecy\Argument;
use Sylius\Bundle\CoreBundle\Model\ProductInterface;

class PriceUpdaterSpec extends ObjectBehavior
{

function let(ApiClient $api)
{

$this->beConstructedWith($api);
}

function it_updates_product_price_through_api($api, ProductInterface $product)
{

$product->getSku()->shouldBeCalled()->willReturn('TES-12-A-1090');
$api->getCurrentProductPrice('TES-12-A-1090')->shouldBeCalled()->

→˓willReturn(1545);
$product->setPrice(1545)->shouldBeCalled();

$this->updatePrice($product);
}

}

The example looks clear and simple, the PriceUpdater service should obtain the SKU of the product, call the
external API and update products price accordingly.

Try running the example by using the following command:

$ bin/phpspec run

> spec\Sylius\Bundle\CoreBundle\Pricing\PriceUpdater

it updates product price through api
Class PriceUpdater does not exists.

Do you want me to create it for you? [Y/n]

Once the class is created and you run the command again, PHPSpec will ask if it should create the method as well.
Start implementing the very initial version of the price updater.

7.1. The Contribution Guide 527

Sylius

<?php

namespace Sylius\Bundle\CoreBundle\Pricing;

use Sylius\Bundle\CoreBundle\Model\ProductInterface;
use Acme\ApiClient;

class PriceUpdater
{

private $api;

public function __construct(ApiClient $api)
{

$this->api = $api;
}

public function updatePrice(ProductInterface $product)
{

$price = $this->api->getCurrentProductPrice($product->getSku());
$product->setPrice($price);

}
}

Done! If you run PHPSpec again, you should see the following output:

$ bin/phpspec run

> spec\Sylius\Bundle\CoreBundle\Pricing\PriceUpdater

XXX it updates product price through api

1 examples (1 passed)
223ms

This example is greatly simplified, in order to illustrate how we work. There should be few more examples, which
cover errors, API exceptions and other edge-cases.

Few tips & rules to follow when working with PHPSpec & Sylius:

• RED is good, add or fix the code to make it green;

• RED-GREEN-REFACTOR is our rule;

• All specs must pass;

• When writing examples, describe the behavior of the object in present tense;

• Omit the public keyword;

• Use underscores (_) in the examples;

• Use type hinting to mock and stub classes;

• If your specification is getting too complex, the design is wrong, try decoupling a bit more;

• If you cannot describe something easily, probably you should not be doing it that way;

• shouldBeCalled or willReturn, never together, except for builders;

• Use constants in assumptions but strings in expected results;

Happy coding!

528 Chapter 7. The Contribution Guide

Sylius

Coding Standards

When contributing code to Sylius, you must follow its coding standards.

Sylius follows the standards defined in the PSR-0, PSR-1 and PSR-2 documents.

Here is a short example containing most features described below:

<?php

/*
* This file is part of the Sylius package.

*
* (c) Paweł Jędrzejewski

*
* For the full copyright and license information, please view the LICENSE

* file that was distributed with this source code.

*/

namespace Acme;

/**
* Coding standards demonstration.

*/
class FooBar
{

const SOME_CONST = 42;

private $fooBar;

/**
* @param string $dummy Some argument description

*/
public function __construct($dummy)
{

$this->fooBar = $this->transformText($dummy);
}

/**
* @param string $dummy Some argument description

* @param array $options

*
* @return string|null Transformed input

*
* @throws \RuntimeException

*/
private function transformText($dummy, array $options = array())
{

$mergedOptions = array_merge(
array(

'some_default' => 'values',
'another_default' => 'more values',

),
$options

);

if (true === $dummy) {
return;

(continues on next page)

7.1. The Contribution Guide 529

http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/

Sylius

(continued from previous page)

}

if ('string' === $dummy) {
if ('values' === $mergedOptions['some_default']) {

return substr($dummy, 0, 5);
}

return ucwords($dummy);
}

throw new \RuntimeException(sprintf('Unrecognized dummy option "%s"',
→˓$dummy));

}
}

Structure

• Add a single space after each comma delimiter;

• Add a single space around operators (===, &&, . . .);

• Add a comma after each array item in a multi-line array, even after the last one;

• Add a blank line before return statements, unless the return is alone inside a statement-group (like an if
statement);

• Use braces to indicate control structure body regardless of the number of statements it contains;

• Define one class per file - this does not apply to private helper classes that are not intended to be instantiated
from the outside and thus are not concerned by the PSR-0 standard;

• Declare class properties before methods;

• Declare public methods first, then protected ones and finally private ones;

• Use parentheses when instantiating classes regardless of the number of arguments the constructor has;

• Exception message strings should be concatenated using sprintf.

Naming Conventions

• Use camelCase, not underscores, for variable, function and method names, arguments;

• Use underscores for option names and parameter names;

• Use namespaces for all classes;

• Prefix abstract classes with Abstract.

• Suffix interfaces with Interface;

• Suffix traits with Trait;

• Suffix exceptions with Exception;

• Use alphanumeric characters and underscores for file names;

• Don’t forget to look at the more verbose Conventions document for more subjective naming considerations.

530 Chapter 7. The Contribution Guide

http://www.php-fig.org/psr/psr-0/

Sylius

Service Naming Conventions

• A service name contains groups, separated by dots;

• All Sylius services use sylius as first group;

• Use lowercase letters for service and parameter names;

• A group name uses the underscore notation;

• Each service has a corresponding parameter containing the class name, following the service_name.class
convention.

Automated Coding Standard Enforcement

You can check your code for Sylius coding standard by running the following command:

$ bin/ecs check src tests

Some of the violations can be automatically fixed by running the same command with --fix suffix like:

$ bin/ecs check src tests --fix

Note: Most of Sylius coding standard checks are extracted to SyliusLabs/CodingStandard package so that reusing
them in your own projects or Sylius plugins is effortless. Too learn about details, take a look at its readme.

Documentation

• Add PHPDoc blocks for all classes, methods, and functions;

• Omit the @return tag if the method does not return anything;

• The @package and @subpackage annotations are not used.

License

• Sylius is released under the MIT license, and the license block has to be present at the top of every PHP file,
before the namespace.

Conventions

This document describes coding standards and conventions used in the Sylius codebase to make it more consistent and
predictable.

Method Names

When an object has a “main” many relation with related “things” (objects, parameters, . . .), the method names are
normalized:

• get()

7.1. The Contribution Guide 531

https://github.com/SyliusLabs/CodingStandard

Sylius

• set()

• has()

• all()

• replace()

• remove()

• clear()

• isEmpty()

• add()

• register()

• count()

• keys()

The usage of these methods are only allowed when it is clear that there is a main relation:

• a CookieJar has many Cookie objects;

• a Service Container has many services and many parameters (as services is the main relation, the naming
convention is used for this relation);

• a Console Input has many arguments and many options. There is no “main” relation, and so the naming
convention does not apply.

For many relations where the convention does not apply, the following methods must be used instead (where XXX is
the name of the related thing):

Main Relation Other Relations
get() getXXX()
set() setXXX()
n/a replaceXXX()
has() hasXXX()
all() getXXXs()
replace() setXXXs()
remove() removeXXX()
clear() clearXXX()
isEmpty() isEmptyXXX()
add() addXXX()
register() registerXXX()
count() countXXX()
keys() n/a

Note: While “setXXX” and “replaceXXX” are very similar, there is one notable difference: “setXXX” may replace,
or add new elements to the relation. “replaceXXX”, on the other hand, cannot add new elements. If an unrecognized
key is passed to “replaceXXX” it must throw an exception.

532 Chapter 7. The Contribution Guide

Sylius

Deprecations

Warning: Sylius is the pre-alpha development stage. We release minor version before every larger change, but
be prepared for BC breaks to happen until 1.0.0 release.

From time to time, some classes and/or methods are deprecated in the framework; that happens when a feature im-
plementation cannot be changed because of backward compatibility issues, but we still want to propose a “better”
alternative. In that case, the old implementation can simply be deprecated.

A feature is marked as deprecated by adding a @deprecated phpdoc to relevant classes, methods, properties, . . . :

/**
* @deprecated Deprecated since version 1.X, to be removed in 1.Y. Use XXX instead.

*/

The deprecation message should indicate the version when the class/method was deprecated, the version when it will
be removed, and whenever possible, how the feature was replaced.

A PHP E_USER_DEPRECATED error must also be triggered to help people with the migration starting one or two
minor versions before the version where the feature will be removed (depending on the criticality of the removal):

trigger_error(
'XXX() is deprecated since version 2.X and will be removed in 2.Y. Use XXX

→˓instead.',
E_USER_DEPRECATED

);

Git

This document explains some conventions and specificities in the way we manage the Sylius code with Git.

Pull Requests

Whenever a pull request is merged, all the information contained in the pull request is saved in the repository.

You can easily spot pull request merges as the commit message always follows this pattern:

merged branch USER_NAME/BRANCH_NAME (PR #1111)

The PR reference allows you to have a look at the original pull request on GitHub: https://github.com/Sylius/Sylius/
pull/1111. Often, this can help understand what the changes were about and the reasoning behind the changes.

Sylius License

Sylius is released under the MIT license.

According to Wikipedia:

“It is a permissive license, meaning that it permits reuse within proprietary software on the condition that
the license is distributed with that software. The license is also GPL-compatible, meaning that the GPL
permits combination and redistribution with software that uses the MIT License.”

7.1. The Contribution Guide 533

https://github.com/Sylius/Sylius/pull/1111
https://github.com/Sylius/Sylius/pull/1111
http://en.wikipedia.org/wiki/MIT_License

Sylius

The License

Copyright (c) 2011-2017 Paweł Jędrzejewski

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

• Backward Compatibility Promise

• Reporting a Bug

• Submitting a Patch

• Security Issues

• BDD Methodology

• Coding Standards

• Conventions

• Git

• Sylius License

Contributing Documentation

Contributing to the Documentation

The documentation is as important as the code. It follows the exact same principles: DRY, tests, ease of maintenance,
extensibility, optimization, and refactoring just to name a few. And of course, documentation has bugs, typos, hard to
read tutorials, and many more.

Contributing

Before contributing, you need to become familiar with the markup language used by the documentation.

The Sylius documentation is hosted on GitHub, in the main repository:

https://github.com/Sylius/Sylius

If you want to submit a patch, fork the official repository on GitHub and then clone your fork to you local destination:

$ git clone git@github.com:YOUR_USERNAME/Sylius.git

Under the name origin you will have from now on the access to your fork. Add also the main repository as the
upstream remote.

534 Chapter 7. The Contribution Guide

https://help.github.com/articles/fork-a-repo

Sylius

$ git remote add upstream git@github.com:Sylius/Sylius.git

Choose the right Base Branch

Before starting to work on a patch, you must determine on which branch you need to work. It will be:

• 1.0 or 1.1, if you are fixing or adding docs for features that exist in one of those versions,

• master, if you are documenting a new feature, that was not in 1.0 nor in 1.1

Note: All bug fixes merged into the 1.0 and 1.1 maintenance branches are also merged into master on a regular
basis.

Create a dedicated branch for your changes (for organization):

$ git checkout -b docs/improving_foo_and_bar

You can now make your changes directly to this branch and commit them. Remember to name your commits descrip-
tively, keep them possibly small, with just unitary changes (such that change something only in one part of the docs,
not everywhere).

When you’re done, push this branch to your GitHub fork and initiate a pull request.

Your pull request will be reviewed, you will be asked to apply fixes if necessary and then it will be merged into the
main repository.

Testing Documentation

To test the documentation before a commit:

• Install pip, the Python package manager,

• Download the documentation requirements,

$ pip install -r docs/requirements.txt
This makes sure that the version of Sphinx you'll get is >=1.4.2!

• Install Sphinx,

$ pip install Sphinx

• In the docs directory run sphinx-build -b html . build and view the generated HTML files in the
build directory.

Creating a Pull Request

Following the example, the pull request will be from your improving_foo_and_bar branch to the Sylius
master branch by default.

GitHub covers the topic of pull requests in detail.

7.1. The Contribution Guide 535

https://pip.pypa.io/en/stable/installing/
http://www.sphinx-doc.org/en/stable/
https://help.github.com/articles/using-pull-requests

Sylius

Note: The Sylius documentation is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported Li-
cense.

Warning: You should always prefix the PR name with a [Documentation] tag!

You can prefix the title of your pull request in a few cases:

• [WIP] (Work in Progress) is used when you are not yet finished with your pull request, but you would like it to
be reviewed. The pull request won’t be merged until you say it is ready.

• [ComponentName] if you are contributing docs that regard on of the Sylius Components.

• [BundleName] when you add documentation of the Sylius Bundles.

• [Behat] if you modify something in the the BDD guide.

• [API] when you are contributing docs to the API guide.

For instance if your pull request is about documentation of some feature of the Resource bundle, but it is still a work
in progress it should look like : [WIP][Documentation][ResourceBundle] Arbitrary feature
documentation.

Documenting new Features or Behavior Changes

If you’re documenting a brand new feature or a change that’s been made in Sylius, you should precede your description
of the change with a .. versionadded:: 1.X tag and a short description:

.. versionadded:: 1.1
The ``getProductDiscount`` method was introduced in Sylius 1.1.

Standards

All documentation in the Sylius Documentation should follow the documentation standards.

Reporting an Issue

The easiest contributions you can make is reporting issues: a typo, a grammar mistake, a bug in a code example, a
missing explanation, and so on.

Steps:

• Submit a new issue in the GitHub tracker;

• (optional) Submit a patch.

Documentation Format

The Sylius documentation uses the reStructuredText as its markup language and Sphinx for building the output (HTML,
PDF, . . .).

536 Chapter 7. The Contribution Guide

https://github.com/Sylius/Sylius/issues/new

Sylius

reStructuredText

reStructuredText “is an easy-to-read, what-you-see-is-what-you-get plaintext markup syntax and parser system”.

You can learn more about its syntax by reading existing Sylius documents or by reading the reStructuredText Primer
on the Sphinx website.

If you are familiar with Markdown, be careful as things are sometimes very similar but different:

• Lists starts at the beginning of a line (no indentation is allowed);

• Inline code blocks use double-ticks (``like this``).

Sphinx

Sphinx is a build system that adds some nice tools to create documentation from the reStructuredText documents. As
such, it adds new directives and interpreted text roles to standard reST markup.

Syntax Highlighting

All code examples uses PHP as the default highlighted language. You can change it with the code-block directive:

.. code-block:: yaml

{ foo: bar, bar: { foo: bar, bar: baz } }

If your PHP code begins with <?php, then you need to use html+php as the highlighted pseudo-language:

.. code-block:: html+php

<?php echo $this->foobar(); ?>

Note: A list of supported languages is available on the Pygments website.

Configuration Blocks

Whenever you show a configuration, you must use the configuration-block directive to show the configuration
in all supported configuration formats (PHP, YAML, and XML)

.. configuration-block::

.. code-block:: yaml

Configuration in YAML

.. code-block:: xml

<!-- Configuration in XML //-->

.. code-block:: php

// Configuration in PHP

7.1. The Contribution Guide 537

https://github.com/Sylius/Sylius/tree/master/docs
http://www.sphinx-doc.org/en/stable/rest.html
http://www.sphinx-doc.org/en/stable/markup/
http://pygments.org/languages/

Sylius

The previous reST snippet renders as follow:

• YAML

Configuration in YAML

• XML

<!-- Configuration in XML //-->

• PHP

// Configuration in PHP

The current list of supported formats are the following:

Markup format Displayed
html HTML
xml XML
php PHP
yaml YAML
json JSON
jinja Twig
html+jinja Twig
html+php PHP
ini INI
php-annotations Annotations

Adding Links

To add links to other pages in the documents use the following syntax:

:doc:`/path/to/page`

Using the path and filename of the page without the extension, for example:

:doc:`/book/architecture`

:doc:`/components_and_bundles/bundles/SyliusAddressingBundle/installation`

The link’s text will be the main heading of the document linked to. You can also specify an alternative text for the link:

:doc:`Simple CRUD </components_and_bundles/bundles/SyliusResourceBundle/installation>`

You can also link to pages outside of the documentation, for instance to the Github.

`Github`_ //it is an intext link.

At the bottom of the document in which you are using your link add a reference:

.. _`Github`: http://www.github.com // with a url to your desired destination.

538 Chapter 7. The Contribution Guide

http://www.github.com

Sylius

Documentation Standards

In order to help the reader as much as possible and to create code examples that look and feel familiar, you should
follow these standards.

Sphinx

• The following characters are chosen for different heading levels: level 1 is =, level 2 -, level 3 ~, level 4 . and
level 5 ";

• Each line should break approximately after the first word that crosses the 72nd character (so most lines end up
being 72-78 characters);

• The :: shorthand is preferred over .. code-block:: php to begin a PHP code block (read the Sphinx
documentation to see when you should use the shorthand);

• Inline hyperlinks are not used. Separate the link and their target definition, which you add on the bottom of the
page;

• Inline markup should be closed on the same line as the open-string;

Example

Example
=======

When you are working on the docs, you should follow the
`Sylius Documentation`_ standards.

Level 2

A PHP example would be::

echo 'Hello World';

Level 3
~~~~~~~

.. code-block:: php

echo 'You cannot use the :: shortcut here';

.. _`Sylius Documentation`: http://docs.sylius.com/en/latest/contributing/
→˓documentation/standards.html

Code Examples

• The code follows the Sylius Coding Standards as well as the Twig Coding Standards;

• To avoid horizontal scrolling on code blocks, we prefer to break a line correctly if it crosses the 85th character,
which in many IDEs is signalised by a vertical line;

• When you fold one or more lines of code, place ... in a comment at the point of the fold. These comments
are:

7.1. The Contribution Guide 539

http://sphinx-doc.org/rest.html#source-code
http://sphinx-doc.org/rest.html#source-code
http://twig.sensiolabs.org/doc/coding_standards.html


Sylius

// ... (php),
# ... (yaml/bash),
{# ... #} (twig)
<!-- ... --> (xml/html),
; ... (ini),
... (text)

• When you fold a part of a line, e.g. a variable value, put ... (without comment) at the place of the fold;

• Description of the folded code: (optional) If you fold several lines: the description of the fold can be placed
after the ... If you fold only part of a line: the description can be placed before the line;

• If useful to the reader, a PHP code example should start with the namespace declaration;

• When referencing classes, be sure to show the use statements at the top of your code block. You don’t need to
show all use statements in every example, just show what is actually being used in the code block;

• If useful, a codeblock should begin with a comment containing the filename of the file in the code block.
Don’t place a blank line after this comment, unless the next line is also a comment;

• You should put a $ in front of every bash line.

Formats

Configuration examples should show recommended formats using configuration blocks. The recommended formats
(and their orders) are:

• Configuration (including services and routing): YAML

• Validation: XML

• Doctrine Mapping: XML

Example

// src/Foo/Bar.php
namespace Foo;

use Acme\Demo\Cat;
// ...

class Bar
{

// ...

public function foo($bar)
{

// set foo with a value of bar
$foo = ...;

$cat = new Cat($foo);

// ... check if $bar has the correct value

return $cat->baz($bar, ...);
}

}

540 Chapter 7. The Contribution Guide



Sylius

Caution: In YAML you should put a space after { and before } (e.g. { _controller: ... }), but this
should not be done in Twig (e.g. {'hello' : 'value'}).

Language Standards

• For sections, use the following capitalization rules: Capitalization of the first word, and all other words, except
for closed-class words:

The Vitamins are in my Fresh California Raisins

• Please use appropriate, informative, rather formal language;

• Do not place any kind of advertisements in the documentation;

• The documentation should be neutral, without judgements, opinions. Make sure you do not favor anyone, our
community is great as a whole, there is no need to point who is better than the rest of us;

• You should use a form of you instead of we (i.e. avoid the first person point of view: use the second instead);

• When referencing a hypothetical person, such as “a user with a session cookie”, gender-neutral pronouns
(they/their/them) should be used. For example, instead of:

– he or she, use they

– him or her, use them

– his or her, use their

– his or hers, use theirs

– himself or herself, use themselves

Sylius Documentation License

The Sylius documentation is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.

You are free:

• to Share — to copy, distribute and transmit the work;

• to Remix — to adapt the work.

Under the following conditions:

• Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way
that suggests that they endorse you or your use of the work);

• Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under
the same or similar license to this one.

With the understanding that:

• Waiver — Any of the above conditions can be waived if you get permission from the copyright holder;

• Public Domain — Where the work or any of its elements is in the public domain under applicable law, that
status is in no way affected by the license;

• Other Rights — In no way are any of the following rights affected by the license:

– Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;

– The author’s moral rights;

7.1. The Contribution Guide 541

http://en.wikipedia.org/wiki/Letter_case#Headings_and_publication_titles
http://en.wikipedia.org/wiki/Letter_case#Headings_and_publication_titles
http://creativecommons.org/licenses/by-sa/3.0/


Sylius

– Rights other persons may have either in the work itself or in how the work is used, such as publicity or
privacy rights.

• Notice — For any reuse or distribution, you must make clear to others the license terms of this work. The best
way to do this is with a link to this web page.

This is a human-readable summary of the Legal Code (the full license).

• Contributing to the Documentation

• Documentation Format

• Documentation Standards

• Sylius Documentation License

Contributing Translations

Sylius application is fully translatable, and what is more it is translated by the community to a variety of languages!

Sylius translations are kept on Crowdin.

How to contribute translations in any language?

The process of submitting new translations in any existing language is really simple:

1. First of all you need an account on Crowdin. If do not have one, please sign up.

2. Find a piece of Sylius and translate it to chosen language here.

3. After approval from the Crowdin community it will be automatically synced into the main repository.

That’s all! You can start translating.

7.1.2 How to contribute using Sylius Vagrant

If you would like to contribute to the repo without worrying about environment, you can follow the “Configure Vagrant
to contribute on Sylius Core” section here to setup your vagrant machine.

7.1.3 Contributing Code

• Backward Compatibility Promise

• Reporting a Bug

• Submitting a Patch

• Security Issues

• BDD Methodology

• Coding Standards

• Conventions

• Git

• Sylius License

542 Chapter 7. The Contribution Guide

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://translate.sylius.com
https://crowdin.com/join
http://translate.sylius.com
https://github.com/Sylius/Vagrant/blob/master/README.md
https://github.com/Sylius/Vagrant/blob/master/README.md


Sylius

7.1.4 Contributing Documentation

• Contributing to the Documentation

• Documentation Format

• Documentation Standards

• Sylius Documentation License

7.1.5 Contributing Translations

7.1.6 Organization

Sylius is developed by a vibrant community of commercial companies and individual developers. The chapter de-
scribes the rules & processes we use to organize our work.

Organization

Vision & Strategy

Vision & strategy is defined by the Project Leader, Core Team and Community members.

If you would like to suggest new tool, process, feel free to submit a PR to this section of the documentation.

GitHub

We use GitHub as the main tool to organize the community work and everything that happens around Sylius. Releases,
bug reports, feature requests, roadmap management, etc. happens on this platform.

If you are not sure about your issue, please use Slack to discuss it with the fellow community members before opening
it on GitHub.

Milestones

Since stable Sylius release, we use milestones to mark the lowest branch an issue or a PR applies to. For example, if
a bug report is marked with 1.0 milestone, the related bugfix PR should be opened against 1.0 branch. Then, after this
PR is merged, it would be released in the next 1.0.x release.

Learn more about the The Release Process.

Pull Request Checklist

Before any PR is merged, the following things need to be confirmed:

1. Changes can be included in the upcoming release.

2. PR has been approved by at least 1 fellow Core Team member.

3. PR adheres to the PR template and contains the MIT license.

4. PR includes relevant documentation updates.

5. PR contains appropriate UPGRADE file updates if necessary.

7.1. The Contribution Guide 543



Sylius

6. PR is properly labeled and milestone is assigned if needed.

7. All required checks are passing. It is green!

Certain PRs can only be merged by the Project Lead:

• BC Breaks

• Introducing new components, bundles or high level architecture layers

• Renaming existing components

• If in doubt, ask your friendly neighborhood Project Lead

Sylius Core Team

The Sylius Core Team is the group of developers that determine the direction and evolution of the Sylius project.
Their votes rule if the features and patches proposed by the community are approved or rejected.

All the Sylius Core Team members are long-time contributors with solid technical expertise and they have demon-
strated a strong commitment to drive the project forward.

This document states the rules that govern the Sylius Core Team. These rules are effective upon publication of this
document and all Sylius Core Team members must adhere to said rules and protocol.

Core Team Organization

Sylius Core Team members have the following roles:

1. Project Leader

• Defines business vision & strategy

• Elects Sylius Core Team Members

2. Lead Developer

• Defines technical vision & strategy

• Coordinates community

• Connects with other projects

3. Documentation Lead

• Coordinates the work related to the documentation

4. Core Developer

• Can review & merge all code PRs and issues

• Focuses on a specific area of the system

Active Core Team Members

• Project Leader:

– Paweł Jędrzejewski (pjedrzejewski)

• Lead Developer:

– Kamil Kokot (pamil)

544 Chapter 7. The Contribution Guide

https://github.com/pjedrzejewski/
https://github.com/pamil/


Sylius

• Documentation Lead:

– Magdalena Banasiak (CoderMaggie)

• Core Developers:

– Łukasz Chruściel (lchrusciel)

– Mateusz Zalewski (Zales0123)

– Grzegorz Sadowski (GSadee)

Core Membership Application

At present, new Sylius Core Team membership applications are not accepted, although we are in the process of inviting
new members.

Core Membership Revocation

A Sylius Core Team membership can be revoked for any of the following reasons:

• Refusal to follow the rules and policies stated in this document;

• Lack of activity for the past six months;

• Willful negligence or intent to harm the Sylius project;

• Upon decision of the Project Leader.

Should new Sylius Core Team memberships be accepted in the future, revoked members must wait at least 6 months
before re-applying.

Sylius Core Team Rules and Protocol Amendments

The rules described in this document may be amended at anytime by the Project Leader.

The Release Process

This document explains the release process of the Sylius project (i.e. the code & documentation hosted on the main
Sylius/Sylius Git repository).

Sylius manages its releases through a time-based model and follows the Semantic Versioning strategy:

• A new Sylius minor version (e.g. 1.1, 1.2, etc.) comes out every four months

• A new Sylius patch version (e.g. 1.0.1, 1.0.2, etc.) comes out every two weeks

Development

The full development period for any minor version lasts four months and is divided into two phases:

• Development: Three months to add new features and to enhance existing ones;

• Stabilization: One month to fix bugs, prepare the release, and wait for the whole Sylius ecosystem (third-party
libraries, plugins, and projects using Sylius) to catch up.

7.1. The Contribution Guide 545

https://github.com/CoderMaggie/
https://github.com/lchrusciel/
https://github.com/Zales0123/
https://github.com/GSadee/
https://github.com/Sylius/Sylius
http://semver.org/


Sylius

During the development period, any new feature can be reverted if it won’t be finished in time or if it won’t be stable
enough to be included in the coming release.

Maintenance

Each Sylius version is maintained for a fixed period of time. This maintenance is divided into:

• Bug fixes and security fixes: During this period, being eight months long, all issues can be fixed. The end of this
period is referenced as being the end of maintenance of a release.

• Security fixes only: During this period, being sixteen months long, only security related issues can be fixed. The
end of this period is referenced as being the end of life of a release.

Backward Compatibility

All Sylius releases have to comply with our Backward Compatibility Promise.

Whenever keeping backward compatibility is not possible, the feature, the enhancement or the bug fix will be sched-
uled for the next major version.

• Vision & Strategy

• Sylius Core Team

• The Release Process

• Vision & Strategy

• Sylius Core Team

• The Release Process

• Contributing Code

• Contributing Documentation

• Contributing Translations

• Organization

546 Chapter 7. The Contribution Guide

http://docs.sylius.com/en/latest/contributing/code/bc.html


CHAPTER 8

Support

The Support section for Sylius.

8.1 Support

Besides documentation we have a very friendly community which provides support for all Sylius users seeking help!

At Sylius we have 3 main channels for communication and support.

8.1.1 Slack

Most of us use Slack for their online communication with co-workers. We know that it is not convenient to have
another chat window open, therefore we’ve chosen Slack for the live communication with the community. Slack is
supposed to handle the most urgent questions in the fastest way possible.

The most important rooms for newcomers are:

#general - for discussions about Sylius development itself, #docs - for discussions related to the documentation, #sup-
port - for asking questions and helping others, #random - for the non-work banter and water cooler conversation.

But there are many more specific channels also. If you have any suggestions regarding its organization, please let us
know on Slack!

Slack requires inviting new members, but this can be done automatically, just go to sylius.com/slack, enter your email
and you will get an invitation. If possible, please use your GitHub username - it will help us to recognize each other
easily!

8.1.2 Forum

In response to the rapid growth of our Ecosystem, we decided it is necessary to launch a brand new platform for
support and exchanging experience. On the contrary to Slack, our Forum is much easier to follow, on Slack unless you

547

http://sylius.com/slack


Sylius

are a part of the discussion when it is happening, it might be difficult to catch up when you have been offline. Forum
has a search engine so it is convenient to browse for what is interesting for you.

The Sylius Community Forum is meant for everyone who is interested in eCommerce technology and Sylius. We
invite both existing and new community members to join the discussion and help shape the ecosystem, products &
services we are building. Get to know other community members, ask for support, suggest an improvement or discuss
your challenge.

You can register via email, Twitter & GitHub by going to https://forum.sylius.com/ and hitting the “Sign-Up” button.

8.1.3 StackOverflow

We also encourage asking Sylius related questions on the stackoverflow.com platform.

• Search for the question before asking, maybe someone has already solved your problem,

• Be specific about your question, this is what SO is about, concrete questions and solutions,

• Be sure to tag them with sylius tag - it will make it easier to find for people who can answer it.

• Try also tagging your questions with the symfony tag - the Symfony community is very big and might be really
helpful with Sylius related questions, as we are basing on Symfony.

To view all Sylius related questions - visit this link. You can also search for phrase.

548 Chapter 8. Support

https://forum.sylius.com/
http://stackoverflow.com
http://stackoverflow.com/questions/tagged/sylius
http://stackoverflow.com/search?tab=newest&q=sylius


CHAPTER 9

Components & Bundles

Documentation of all Sylius components and bundles useful when using them standalone.

9.1 Components & Bundles

9.1.1 Sylius Bundles Documentation

SyliusAddressingBundle

This bundle integrates the Addressing into Symfony and Doctrine.

With minimal configuration you can introduce addresses, countries, provinces and zones management into your
project. It’s fully customizable, but the default setup should be optimal for most use cases.

It also contains zone matching mechanisms, which allow you to match customer addresses to appropriate tax/shipping
(or any other) zones. There are several models inside the bundle, Address, Country, Province, Zone and ZoneMember.

There is also a ZoneMatcher service. You’ll get familiar with it in later parts of this documentation.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use following command to add the bundle
to your composer.json and download package.

If you have Composer installed globally.

$ composer require sylius/addressing-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/addressing-bundle:*

549

http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

Adding required bundles to the kernel

You need to enable the bundle inside the kernel.

If you’re not using any other Sylius bundles, you will also need to add SyliusResourceBundle and its dependencies to
kernel. Don’t worry, everything was automatically installed via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle(),
new FOS\RestBundle\FOSRestBundle(),
new JMS\SerializerBundle\JMSSerializerBundle($this),
new Stof\DoctrineExtensionsBundle\StofDoctrineExtensionsBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),

new Sylius\Bundle\AddressingBundle\SyliusAddressingBundle(),
new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),

// Other bundles...
new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),

);
}

Updating database schema

Run the following command.

$ php bin/console doctrine:schema:update --force

Warning: This should be done only in dev environment! We recommend using Doctrine migrations, to safely
update your schema.

ZoneMatcher

This bundle exposes the ZoneMatcher as sylius.zone_matcher service.

<?php

$zoneMatcher = $this->get('sylius.zone_matcher');

$zone = $zoneMatcher->match($user->getBillingAddress());

Forms

The bundle ships with a set of useful form types for all models. You can use the defaults or override them with your
own types.

550 Chapter 9. Components & Bundles



Sylius

Address form

The address form type is named sylius_address and you can create it whenever you need, using the form factory.

<?php

// src/Acme/ShopBundle/Controller/AddressController.php

namespace Acme\ShopBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;

class DemoController extends Controller
{

public function fooAction(Request $request)
{

$form = $this->get('form.factory')->create('sylius_address');
}

}

You can also embed it into another form.

<?php

// src/Acme/ShopBundle/Form/Type/OrderType.php

namespace Acme\ShopBundle\Form\Type;

use Sylius\Bundle\OrderBundle\Form\Type\OrderType as BaseOrderType;
use Symfony\Component\Form\FormBuilderInterface;

class OrderType extends BaseOrderType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

parent::buildForm($builder, $options);

$builder
->add('billingAddress', 'sylius_address')
->add('shippingAddress', 'sylius_address')

;
}

}

Summary

Configuration Reference

sylius_addressing:
# The driver used for persistence layer.
driver: ~
resources:

address:
classes:

(continues on next page)

9.1. Components & Bundles 551



Sylius

(continued from previous page)

model: Sylius\Component\Addressing\Model\Address
interface: Sylius\Component\Addressing\Model\AddressInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AddressingBundle\Form\Type\AddressType

country:
classes:

model: Sylius\Component\Addressing\Model\Country
interface: Sylius\Component\Addressing\Model\CountryInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AddressingBundle\Form\Type\CountryType

province:
classes:

model: Sylius\Component\Addressing\Model\Province
interface: Sylius\Component\Addressing\Model\ProvinceInterface
controller:

→˓Sylius\Bundle\AddressingBundle\Controller\ProvinceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AddressingBundle\Form\Type\ProvinceType

zone:
classes:

model: Sylius\Component\Addressing\Model\Zone
interface: Sylius\Component\Addressing\Model\ZoneInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AddressingBundle\Form\Type\ZoneType

zone_member:
classes:

model: Sylius\Component\Addressing\Model\ZoneMember
interface: Sylius\Component\Addressing\Model\ZoneMemberInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AddressingBundle\Form\Type\ZoneMemberType

Tests

$ composer install
$ bin/phpspec run -fpretty --verbose

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

Learn more

• Addresses in the Sylius platform - concept documentation

552 Chapter 9. Components & Bundles

https://github.com/Sylius/Sylius/issues


Sylius

SyliusAttributeBundle

This bundle provides easy integration of the Sylius Attribute component with any Symfony full-stack application.

Sylius uses this bundle internally for its product catalog to manage the different attributes that are specific to each
product.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download the package.

If you have Composer installed globally.

$ composer require sylius/attribute-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/attribute-bundle

Adding required bundles to the kernel

You need to enable the bundle inside the kernel.

If you’re not using any other Sylius bundles, you will also need to add SyliusResourceBundle and its dependencies to
kernel. Don’t worry, everything was automatically installed via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle(),
new FOS\RestBundle\FOSRestBundle(),
new JMS\SerializerBundle\JMSSerializerBundle($this),
new Stof\DoctrineExtensionsBundle\StofDoctrineExtensionsBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),
new Sylius\Bundle\AttributeBundle\SyliusAttributeBundle(),
new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),

// Other bundles...
new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),

);
}

Container configuration

Put this configuration inside your app/config/config.yml.

sylius_attribute:
driver: doctrine/orm # Configure the doctrine orm driver used in the

→˓documentation. (continues on next page)

9.1. Components & Bundles 553

http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

(continued from previous page)

And configure doctrine extensions which are used by the bundle.

stof_doctrine_extensions:
orm:

default:
timestampable: true

Updating database schema

Run the following command.

$ php bin/console doctrine:schema:update --force

Warning: This should be done only in dev environment! We recommend using Doctrine migrations, to safely
update your schema.

Congratulations! The bundle is now installed and ready to use.

Configuration reference

sylius_attribute:
driver: ~ # The driver used for persistence layer. Currently only `doctrine/

→˓orm` is supported.
resources:

# `subject_name` can be any name, for example `product`, `ad`, or `blog_
→˓post`

subject_name:
subject: ~ # Required: The subject class implementing

→˓`AttributeSubjectInterface`.
attribute:

classes:
model: Sylius\Component\Attribute\Model\Attribute
interface: Sylius\Component\Attribute\Model\AttributeInterface
repository:

→˓Sylius\Bundle\TranslationBundle\Doctrine\ORM\TranslatableResourceRepository
controller:

→˓Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AttributeBundle\Form\Type\AttributeType

translation:
classes:

model:
→˓Sylius\Component\Attribute\Model\AttributeTranslation

interface:
→˓Sylius\Component\Attribute\Model\AttributeTranslationInterface

controller:
→˓Sylius\Bundle\ResourceBundle\Controller\ResourceController

repository: ~ # Required: The repository class for the
→˓attribute translation.

(continues on next page)

554 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

factory: Sylius\Component\Resource\Factory\Factory
form:

→˓Sylius\Bundle\AttributeBundle\Form\Type\AttributeTranslationType
attribute_value:

classes:
model: ~ # Required: The model of the attribute value
interface: ~ # Required: The interface of the attribute value
controller:

→˓Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~ # Required: The repository class for the

→˓attribute value.
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AttributeBundle\Form\Type\AttributeValueType

Learn more

• Attributes in the Sylius platform - concept documentation

SyliusCustomerBundle

A solution for customer management system inside of a Symfony application.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download the package.

If you have Composer installed globally.

$ composer require sylius/customer-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/customer-bundle

Adding required bundles to the kernel

You need to enable the bundle inside the kernel.

If you’re not using any other Sylius bundles, you will also need to add SyliusResourceBundle and its dependencies to
kernel. Don’t worry, everything was automatically installed via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new FOS\RestBundle\FOSRestBundle(),

(continues on next page)

9.1. Components & Bundles 555

http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

(continued from previous page)

new JMS\SerializerBundle\JMSSerializerBundle($this),
new Stof\DoctrineExtensionsBundle\StofDoctrineExtensionsBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),
new Bazinga\Bundle\HateoasBundle\BazingaHateoasBundle(),
new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle(),
new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),
new Sylius\Bundle\CustomerBundle\SyliusCustomerBundle(),

// Other bundles...
new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),

);
}

Configure Doctrine extensions

Configure doctrine extensions which are used by the bundle.

# app/config/config.yml
stof_doctrine_extensions:

orm:
default:

timestampable: true

Updating database schema

Run the following command.

$ php bin/console doctrine:schema:update --force

Warning: This should be done only in dev environment! We recommend using Doctrine migrations, to safely
update your schema.

Congratulations! The bundle is now installed and ready to use.

Summary

Note: To be written.

Configuration reference

sylius_customer:
driver: doctrine/orm
resources:

customer:
classes:

(continues on next page)

556 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

model: Sylius\Component\Core\Model\Customer
repository: Sylius\Bundle\CoreBundle\Doctrine\ORM\CustomerRepository
form:

default: Sylius\Bundle\CoreBundle\Form\Type\Customer\CustomerType
profile:

→˓Sylius\Bundle\CustomerBundle\Form\Type\CustomerProfileType
choice: Sylius\Bundle\ResourceBundle\Form\Type\ResourceChoiceType

interface: Sylius\Component\Customer\Model\CustomerInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory

customer_group:
classes:

model: Sylius\Component\Customer\Model\CustomerGroup
interface: Sylius\Component\Customer\Model\CustomerGroupInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\CustomerBundle\Form\Type\CustomerGroupType

phpspec examples

$ composer install
$ bin/phpspec run -fpretty --verbose

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

Learn more

• Customers in the Sylius platform - concept documentation

SyliusFixturesBundle

Configurable fixtures management for Symfony applications.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download the package.

If you have Composer installed globally.

$ composer require sylius/fixtures-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/fixtures-bundle

9.1. Components & Bundles 557

https://github.com/Sylius/Sylius/issues
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

Adding required bundles to the kernel

You need to enable the bundle inside the kernel, usually at the end of bundle list.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
// Other bundles...
new Sylius\Bundle\FixturesBundle\SyliusFixturesBundle(),

);
}

Architecture

Flexibility is one of the key concepts of SyliusFixturesBundle. This article aims to explain what design decisions
were made in order to achieve it.

Suites

Suites are collections of configured fixtures. They allow you to define different sets (for example - staging,
development or big_shop) that can be loaded independently. They are defined through YAML configuration:

sylius_fixtures:
suites:

my_suite_name: # Suite name as a key
listeners: ~
fixtures: ~

Fixtures

Fixtures are just plain old PHP objects, that change system state during their execution - they can either persist some
entities in the database, upload some files, dispatch some events or do anything you think is needed.

sylius_fixtures:
suites:

my_suite_name:
fixtures:

my_fixture: # Fixture name as a key
priority: 0 # The higher priority is, the sooner the fixture will

→˓be executed
options: ~ # Fixture options

They implement the Sylius\Bundle\FixturesBundle\Fixture\FixtureInterface and need to be
registered under the sylius_fixtures.fixture tag in order to be used in suite configuration.

Note: The former interface extends the ConfigurationInterface, which is widely known from
Configuration classes placed under DependencyInjection directory in Symfony bundles.

558 Chapter 9. Components & Bundles



Sylius

Using a fixture multiple times in a single suite

In order to use the same fixture multiple times in a single suite, it is needed to alias them:

sylius_fixtures:
suites:

my_suite_name:
regular_user: # Fixture alias as a key

name: user # Fixture name
options:

admin: false
amount: 10

admin_user: # Fixture alias as a key
name: user # Fixture name
options:

admin: true
amount: 2

Both regular_user and admin_user are the aliases for user fixture. They will run the same fixture, but with
different options being submitted.

Listeners

Listeners allow you to execute code at some point of fixtures loading.

sylius_fixtures:
suites:

my_suite_name:
listeners:

my_listener: # Listener name as a key
priority: 0 # The higher priority is, the sooner the fixture will

→˓be executed
options: ~ # Listener options

They implement at least one of four interfaces:

• Sylius\Bundle\FixturesBundle\Listener\BeforeSuiteListenerInterface - receives
Sylius\Bundle\FixturesBundle\Listener\SuiteEvent as an argument

• Sylius\Bundle\FixturesBundle\Listener\BeforeFixtureListenerInterface - re-
ceives Sylius\Bundle\FixturesBundle\Listener\FixtureEvent as an argument

• Sylius\Bundle\FixturesBundle\Listener\AfterFixtureListenerInterface - receives
Sylius\Bundle\FixturesBundle\Listener\FixtureEvent as an argument

• Sylius\Bundle\FixturesBundle\Listener\AfterSuiteListenerInterface - receives
Sylius\Bundle\FixturesBundle\Listener\SuiteEvent as an argument

Note: The former interface extends the ConfigurationInterface, which is widely known from
Configuration classes placed under DependencyInjection directory in Symfony bundles.

In order to be used in suite configuration, they need to be registered under the sylius_fixtures.listener.

9.1. Components & Bundles 559



Sylius

Disabling listeners / fixtures in consecutive configurations

Given the following configuration coming from a third party (like Sylius if you’re developing an application based on
it):

sylius_fixtures:
suites:

my_suite_name:
listeners:

first_listener: ~
second_listener: ~

fixtures:
first_fixture: ~
second_fixture: ~

It is possible to disable a listener or a fixture in a consecutive configuration by providing false as its value:

sylius_fixtures:
suites:

my_suite_name:
listeners:

second_listener: false
fixtures:

second_fixture: false

These two configurations combined will be treated as a single configuration like:

sylius_fixtures:
suites:

my_suite_name:
listeners:

first_listener: ~
fixtures:

first_fixture: ~

Custom fixture

Basic fixture

Let’s create a fixture that loads all countries from the Intl library. We’ll extend the AbstractFixture in order
to skip the configuration part for now:

namespace AppBundle\Fixture;

use Sylius\Bundle\FixturesBundle\Fixture\AbstractFixture;
use Sylius\Bundle\FixturesBundle\Fixture\FixtureInterface;

final class CountryFixture extends AbstractFixture implements FixtureInterface
{

private $countryManager;

public function __construct(ObjectManager $countryManager)
{

$this->countryManager = $countryManager;
}

(continues on next page)

560 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

public function getName()
{

return 'country';
}

public function load(array $options)
{

$countriesCodes = array_keys(\Intl::getRegionBundle()->getCountryNames());

foreach ($countriesCodes as $countryCode) {
$country = new Country($countryCode);

$this->countryManager->persist($country);
}

$this->countryManager->flush();
}

}

The next step is to register this fixture:

<service id="app.fixture.country" class="AppBundle\Fixture\CountryFixture">
<argument type="service" id="doctrine.orm.entity_manager" />
<tag name="sylius_fixtures.fixture" />

</service>

Fixture is now registered and ready to use in your suite:

sylius_fixtures:
suites:

my_suite:
fixtures:

country: ~

Configurable fixture

Loading all countries may be useful, but what if you want to load only some defined countries in one suite and all the
countries in the another one? You don’t need to create multiple fixtures, a one configurable fixture will do the job!

// ...

final class CountryFixture extends AbstractFixture implements FixtureInterface
{

// ...

public function load(array $options)
{

foreach ($options['countries'] as $countryCode) {
$country = new Country($countryCode);

$this->countryManager->persist($country);
}

$this->countryManager->flush();
(continues on next page)

9.1. Components & Bundles 561



Sylius

(continued from previous page)

}

protected function configureOptionsNode(ArrayNodeDefinition $optionsNode)
{

$optionsNode
->children()
->arrayNode('countries')

->performNoDeepMerging()
->defaultValue(array_keys(\Intl::getRegionBundle()->

→˓getCountryNames()))
->prototype('scalar')

;
}

}

Note: The AbstractFixture implements the ConfigurationInterface::getConfigTreeBuilder()
and exposes a handy configureOptionsNode() method to reduce the boilerplate. It is possible to test this
configuration using SymfonyConfigTest library. For examples of that tests have a look at Sylius Fixtures Configuration
Tests.

Now, it is possible for the fixture to create different outcomes by just changing its configuration:

sylius_fixtures:
suites:

my_suite:
fixtures:

country: ~ # Creates all countries
my_another_suite:

fixtures:
country:

options: ~ # Still creates all countries
my_customized_suite:

fixtures:
country:

options:
countries: # Creates only defined countries

- PL
- FR
- DE

Custom listener

Basic listener

Let’s create a listener that removes the directory before loading the fixtures.

namespace AppBundle\Listener;

use Sylius\Bundle\FixturesBundle\Listener\AbstractListener;
use Sylius\Bundle\FixturesBundle\Listener\BeforeSuiteListenerInterface;
use Sylius\Bundle\FixturesBundle\Listener\SuiteEvent;
use Symfony\Component\Filesystem\Filesystem;

(continues on next page)

562 Chapter 9. Components & Bundles

https://github.com/matthiasnoback/SymfonyConfigTest
https://github.com/Sylius/Sylius/tree/master/src/Sylius/Bundle/CoreBundle/Tests/Fixture
https://github.com/Sylius/Sylius/tree/master/src/Sylius/Bundle/CoreBundle/Tests/Fixture


Sylius

(continued from previous page)

final class DirectoryPurgerListener extends AbstractListener implements
→˓ListenerInterface
{

public function getName()
{

return 'directory_purger';
}

public function beforeSuite(SuiteEvent $suiteEvent, array $options)
{

(new Filesystem())->remove('/hardcoded/path/to/directory');
}

}

The next step is to register this listener:

<service id="app.listener.directory_purger" class=
→˓"AppBundle\Listener\DirectoryPurgerListener">

<tag name="sylius_fixtures.listener" />
</service>

Listener is now registered and ready to use in your suite:

sylius_fixtures:
suites:

my_suite:
listeners:

directory_purger: ~

Configurable listener

Listener that removes a hardcoded directory isn’t very useful. Allowing it to receive an array of directories would
make this listener a lot more reusable.

// ...

final class DirectoryPurgerListener extends AbstractListener implements
→˓ListenerInterface
{

// ...

public function beforeSuite(SuiteEvent $suiteEvent, array $options)
{

(new Filesystem())->remove($options['directories']);
}

protected function configureOptionsNode(ArrayNodeDefinition $optionsNode)
{

$optionsNodeBuilder
->arrayNode('directories')

->performNoDeepMerging()
->prototype('scalar')

;

(continues on next page)

9.1. Components & Bundles 563



Sylius

(continued from previous page)

}
}

Note: The AbstractListener implements the ConfigurationInterface::getConfigTreeBuilder()
and exposes a handy configureOptionsNode() method to reduce the boilerplate. It is possible to test this
configuration using SymfonyConfigTest library.

Now, it is possible to remove different directories in each suite:

sylius_fixtures:
suites:

my_suite:
listener:

directory_purger:
options:

directories:
- /custom/directory
- /another/custom/directory

my_another_suite:
listener:

directory_purger:
options:

directories:
- /path/per/suite

Built-in listeners

SyliusFixturesBundle comes with a few useful listeners.

Logger (logger)

Provides output while running sylius:fixtures:load command.

# Without logger

$ bin/console sylius:fixtures:load my_suite
$ _

# With logger

$ bin/console sylius:fixtures:load my_suite
Running suite "my_suite"...
Running fixture "country"...
Running fixture "locale"...
Running fixture "currency"...
$ _

The logger does not have any configuration options. It can be enabled in such a way:

sylius_fixtures:
suites:

(continues on next page)

564 Chapter 9. Components & Bundles

https://github.com/matthiasnoback/SymfonyConfigTest


Sylius

(continued from previous page)

my_suite:
listeners:

logger: ~

ORM Purger (orm_purger)

Purges the relational database. Uses delete purge mode and the default entity manager if not configured otherwise.

Configuration options:

• mode - sets how database is purged, available values: delete (default), truncate

• managers - an array of entity managers’ names used to purge the database, [null] by default

• exclude - an array of table/view names to be excluded from purge, [] by default

Example configuration:

sylius_fixtures:
suites:

my_suite:
listeners:

orm_purger:
options:

mode: truncate
managers:

- custom_manager
exclude:

- custom_entity_table_name

PHPCR / MongoDB Purger (phpcr_purger / mongodb_purger)

Purges the document database. Uses the default document manager if not configured otherwise.

Configuration options:

• managers - an array of document managers’ names used to purge the database, [null] by default

Example configuration:

sylius_fixtures:
suites:

my_suite:
listeners:

phpcr_purger:
options:

managers:
- custom_manager # Uses custom document manager

mongodb_purger: ~ # Uses default document manager

Commands

9.1. Components & Bundles 565



Sylius

Listing fixtures

To list all available suites and fixtures, use the sylius:fixtures:list command.

$ bin/console sylius:fixtures:list

Available suites:
- default
- dev
- test

Available fixtures:
- country
- locale
- currency

Loading fixtures

To load a suite, use the sylius:fixtures:load [suite] command.

$ bin/console sylius:fixtures:load default

Running suite "default"...
Running fixture "country"...
Running fixture "locale"...
Running fixture "currency"...

Summary

Tests

$ composer install
$ bin/phpspec run
$ bin/phpunit

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

Learn more

• Fixtures in the Sylius platform - concept documentation

SyliusGridBundle

Displaying a grid with sorting and filtering options is a common task for many web applications. This bundle integrates
the Sylius Grid component with the Symfony framework and allows you to display grids really easily.

Some of the features worth mentioning:

• Uses YAML to define the grid structure

566 Chapter 9. Components & Bundles

https://github.com/Sylius/Sylius/issues


Sylius

• Supports different data sources: Doctrine ORM/ODM, native SQL query.

• Rich filter functionality, easy to define your own filter type with flexible form

• Each column type is configurable and you can create your own

• Automatic sorting

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download the package.

If you have Composer installed globally.

$ composer require sylius/grid-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/grid-bundle

Adding required bundles to the kernel

You need to enable the bundle inside the kernel.

If you’re not using any other Sylius bundles, you will also need to add SyliusResourceBundle and its depen-
dencies to kernel. Don’t worry, everything was automatically installed via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new Sylius\Bundle\GridBundle\SyliusGridBundle(),

);
}

Congratulations! The bundle is now installed and ready to use. You need to define your first resource and grid!

Your First Grid

In order to use grids, we need to register your entity as a Sylius resource. Let us assume you have a Supplier model in
your application, which represents a supplier of goods in your shop and has several fields, including name, description
and enabled field.

In order to make it a Sylius resource, you need to configure it under sylius_resource node. If you don’t have it
yet create a file app/config/resources.yml, import it in the app/config/config.yml.

# app/config/resources.yml
sylius_resource:

resources:
app.supplier:

(continues on next page)

9.1. Components & Bundles 567

http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

(continued from previous page)

driver: doctrine/orm
classes:

model: AppBundle\Entity\Supplier

# app/config/config.yml
imports:

- { resource: "resources.yml" }

That’s it! Your class is now a resource. In order to learn what does it mean, please refer to the SyliusResourceBundle
documentation.

Grid Definition

Now we can configure our first grid:

Note: Remember that a grid is the way objects of a desired entity are displayed on its index view. Therefore only
fields that are useful for identification of objects are available - only string and twig type. Then even though a
Supplier has also a description field, it is not needed on index and can’t be displayed here.

# app/config/grids/admin/supplier.yml
sylius_grid:

grids:
app_admin_supplier:

driver:
name: doctrine/orm
options:

class: AppBundle\Entity\Supplier
fields:

name:
type: string
label: sylius.ui.name

enabled:
type: twig
label: sylius.ui.enabled
options:

template: SyliusUiBundle:Grid/Field:enabled.html.twig # This
→˓will be a checkbox field

Remember to import your grid in the app/config/grids/grids.yml file which has to be imported in the
app/config/config.yml.

# app/config/grids/grids.yml
imports:

- { resource: 'admin/supplier.yml' }

# app/config/config.yml
imports:

- { resource: "grids/grids.yml" }

568 Chapter 9. Components & Bundles



Sylius

Generating The CRUD Routing

That’s it. SyliusResourceBundle allows to generate a default CRUD interface including the grid we have just defined.
Just put this in your routing configuration!

# app/config/routing/admin/supplier.yml
app_admin_supplier:

resource: |
alias: app.supplier
section: admin
templates: SyliusAdminBundle:Crud
except: ['show']
redirect: update
grid: app_admin_supplier
vars:

all:
subheader: app.ui.supplier # define a translation key for your entity

→˓subheader
index:

icon: 'file image outline' # choose an icon that will be displayed
→˓next to the subheader

type: sylius.resource

# app/config/routing/admin.yml
app_admin_supplier:

resource: 'supplier.yml'

# app/config/routing.yml
app_admin:

resource: 'routing/admin.yml'
prefix: /admin

This will generate the following paths:

• /admin/suppliers/ - [GET] - Your grid.

• /admin/suppliers/new - [GET/POST] - Creating new supplier.

• /admin/suppliers/{id}/edit - [GET/PUT] - Editing an existing supplier.

• /admin/suppliers/{id} - [DELETE] - Deleting specific supplier.

• /admin/suppliers/{id} - [GET] - Displaying specific supplier.

Tip: In the Semantic UI documentation you can find all possible icons you can choose for your grid.

Tip: See how to add links to your new entity administration in the administration menu.

Tip: Adding translations to the grid (read more here):

# app/Resources/translations/messages.en.yml
app:

ui:
supplier: Supplier

(continues on next page)

9.1. Components & Bundles 569

http://semantic-ui.com/elements/icon.html


Sylius

(continued from previous page)

suppliers: Suppliers
menu:

admin:
main:

additional:
header: Additional
suppliers: Suppliers

After that your new grid should look like that when accessing the /admin/suppliers/new path in order to create new
object:

And when accessing index on the /admin/suppliers/ path it should look like that:

Defining Filters

In order to make searching for certain things in your grid you can use filters.

sylius_grid:
grids:

app_admin_supplier:
...

filters:
name:

type: string
enabled:

type: boolean

How will it look like in the admin panel?

570 Chapter 9. Components & Bundles



Sylius

What about filtering by fields of related entities? For instance if you would like to filter your suppliers by their country
of origin, which is a property of the associated address entity.

This first requires a custom repository method for your grid query:

# app/config/grids/admin/supplier.yml
sylius_grid:

grids:
app_admin_supplier:

driver:
name: doctrine/orm
options:

class: AppBundle\Entity\Supplier
repository:

method: mySupplierGridQuery

Note: The repository method has to return a queryBuilder object, since the query has to adjustable depending on
the filters and sorting the user later applies. Furthermore, all sub entities you wish to use later for filtering have to be
joined explicitely in the query.

Then you can set up your filter to accordingly:

sylius_grid:
grids:

app_admin_supplier:
...

filters:
...
country:

type: string
label: origin
options:

fields: [address.country]
form_options:

type: contains

Default Sorting

You can define by which field you want the grid to be sorted and how.

# app/config/grids/admin/supplier.yml
sylius_grid:

grids:
app_admin_supplier:

...
sorting:

name: asc
...

9.1. Components & Bundles 571



Sylius

Then at the fields level, define that the field can be used for sorting:

# app/config/grids/admin/supplier.yml
sylius_grid:

grids:
app_admin_supplier:

...
fields:

name:
type: string
label: sylius.ui.name
sortable: ~

...

If your field is not of a “simple” type, f.i. a twig template with a specific path, you get sorting working with the
following definition:

# app/config/grids/admin/supplier.yml
sylius_grid:

grids:
app_admin_supplier:

...
fields:

....
origin:

type: twig
options:

template: "@AppBundle/Grid/Fields/myCountryFlags.html.twig"
path: address.country
label: app.ui.country
sortable: address.country

...

Pagination

You can limit how many items are visible on each page by providing an array of integers into the limits parameter.
The first element of the array will be treated as the default, so by configuring:

# app/config/grids/admin/supplier.yml
sylius_grid:

grids:
app_admin_supplier:

...
limits: [30, 12, 48]
...

you will see thirty suppliers per page, also you will have the possibility to change the number of elements to either 12
or 48.

Note: Pagination limits are set by default to 10, 25 and 50 items per page. In order to turn it off, configure limits: ~.

Actions Configuration

Next step is adding some actions to the grid: create, update and delete.

572 Chapter 9. Components & Bundles



Sylius

Note: There are two types of actions that can be added to a grid: main which “influence” the whole grid (like adding
new objects) and item which influence one row of the grid (one object) like editing or deleting.

# app/config/grids/admin/supplier.yml
sylius_grid:

grids:
app_admin_supplier:

...
actions:

main:
create:

type: create
item:

update:
type: update

delete:
type: delete

This activates such a view on the /admin/suppliers/ path:

Your grid is ready to use!

Field Types

This is the list of built-in field types.

String

Simplest column type, which basically renders the value at given path as a string.

By default it uses the name of the field, but you can specify the path alternatively. For example:

sylius_grid:
grids:

app_user:
fields:

email:
type: string

(continues on next page)

9.1. Components & Bundles 573



Sylius

(continued from previous page)

label: app.ui.email # each filed type can have a label, we
→˓suggest using translation keys instead of messages

path: contactDetails.email

This configuration will display the value from $user->getContactDetails()->getEmail().

DateTime

This column type works exactly the same way as string, but expects DateTime instance and outputs a formatted date
and time string.

sylius_grid:
grids:

app_user:
fields:

birthday:
type: datetime
label: app.ui.birthday
options:

format: 'Y:m:d H:i:s' # this is the default value, but you
→˓can modify it

Twig (twig)

Twig column type is the most flexible from all of them, because it delegates the logic of rendering the value to Twig
templating engine. You just have to specify the template and it will be rendered with the data variable available to
you.

sylius_grid:
grids:

app_user:
fields:

name:
type: twig
label: app.ui.name
options:

template: :Grid/Column:_prettyName.html.twig

In the :Grid/Column:_prettyName.html.twig template, you just need to render the value for example as
you see below:

<strong>{{ data }}</strong>

If you wish to render more complex grid fields just redefine the path of the field to root – path: . in the yaml and
you can access all attributes of the object instance:

<strong>{{ data.name }}</strong>
<p>{{ data.description|markdown }}</p>

Boolean (boolean)

Boolean column type expects the value to be boolean and renders a default or custom Twig template.

574 Chapter 9. Components & Bundles



Sylius

sylius_grid:
grids:

app_user:
fields:

status:
type: boolean
label: app.ui.status

Field configuration

Each field can be configured with several configuration keys, to make it more suitable to your grid requirements.

Name Type Description
type string Type of column. Default field types are described here.
label string Label displayed in the field header. By default, it is field name.
path string Path to property displayed in field (can be property of resource or one of its referenced objects).
posi-
tion

int Position of field in the grid index view

options array Array of field options (see below).

options field can contains following fields:

Name Type Description Default
tem-
plate

string Available (and required) only for twig column type. Path to template that is used to
render column value.

format string Available only for datetime field type. Y:m:d
H:i:s

Filters

Filters on grids are a kind of search prepared for each grid. Having a grid of objects you can filter out only those with
a specified name, or value etc. Here you can find the supported filters. Keep in mind you can very easily define your
own ones!

String

Simplest filter type. It can filter by one or multiple fields.

sylius_grid:
grids:

app_user:
filters:

username:
type: string

email:
type: string

firstName:
type: string

lastName:
type: string

9.1. Components & Bundles 575



Sylius

The filter allows the user to select following search options:

• contains

• not contains

• equal

• not equal

• starts with

• ends with

• empty

• not empty

• in

• not in

If you don’t want display all theses matching possibilities, you can choose just one of them. Then only the input field
will be displayed. You can achieve it like that:

sylius_grid:
grids:

app_user:
filters:

username:
type: string
form_options:

type: contains

By configuring a filter like above you will have only an input field for filtering users objects that contain a given
string in their username.

Boolean

This filter checks if a value is true or false.

sylius_grid:
grids:

app_channel:
filters:

enabled:
type: boolean

Date

This filter checks if a chosen datetime field is between given dates.

sylius_grid:
grids:

app_order:
filters:

createdAt:
type: date

(continues on next page)

576 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

completedAt:
type: date

Entity

This type filters by a chosen entity.

sylius_grid:
grids:

app_order:
filters:

channel:
type: entity
form_options:

class: "%app.model.channel%"
customer:

type: entity
form_options:

class: "%app.model.customer%"

Money

This filter checks if an amount is in range and in a specified currency

sylius_grid:
grids:

app_order:
filters:

total:
type: money
form_options:

scale: 3
options:

currency_field: currencyCode
scale: 3

Warning: Providing different scale between form_options and options may cause unwanted, and plausibly
volatile results.

Exists

This filter checks if the specified field contains any value

sylius_grid:
grids:

app_order:
filters:

date:
type: exists

(continues on next page)

9.1. Components & Bundles 577



Sylius

(continued from previous page)

options:
field: completedAt

Custom Filters

Tip: If you need to create a custom filter, read the docs here.

Custom Field Type

There are certain cases when built-in field types are not enough. Sylius Grids allows to define new types with ease!

All you need to do is create your own class implementing FieldTypeInterface and register it as a service.

<?php

namespace AppBundle\Grid\FieldType;

use Sylius\Component\Grid\Definition\Field;
use Sylius\Component\Grid\FieldTypes\FieldTypeInterface;
use Symfony\Component\OptionsResolver\OptionsResolver;

class CustomType implements FieldTypeInterface
{

public function render(Field $field, $data, array $options = [])
{

// Your rendering logic... Use Twig, PHP or even external api...
}

public function configureOptions(OptionsResolver $resolver)
{

$resolver
->setDefaults([

'dynamic' => false
])
->setAllowedTypes([

'dynamic' => ['boolean']
])

;
}

public function getName()
{

return 'custom';
}

}

That is all. Now register your new field type as a service.

# app/config/services.yml
app.grid_field.custom:

class: AppBundle\Grid\FieldType\CustomType

(continues on next page)

578 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

tags:
- { name: sylius.grid_field, type: custom }

Now you can use your new column type in the grid configuration!

sylius_grid:
grids:

app_admin_supplier:
driver:

name: doctrine/orm
options:

class: AppBundle\Entity\Supplier
fields:

name:
type: custom
label: sylius.ui.name

Custom Filter

Sylius Grids come with built-in filters, but there are use-cases where you need something more than basic filter. Grids
allow you to define your own filter types!

To add a new filter, we need to create an appropriate class and form type.

<?php

namespace AppBundle\Grid\Filter;

use Sylius\Component\Grid\Data\DataSourceInterface;
use Sylius\Component\Grid\Filtering\FilterInterface;

class SuppliersStatisticsFilter implements FilterInterface
{

public function apply(DataSourceInterface $dataSource, $name, $data, array
→˓$options = [])

{
// Your filtering logic. DataSource is kind of query builder.
// $data['stats'] contains the submitted value!
// here is an example
$dataSource->restrict($dataSource->getExpressionBuilder()->equals('stats',

→˓$data['stats']));
}

}

And the form type:

<?php

namespace AppBundle\Form\Type\Filter;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolver;

(continues on next page)

9.1. Components & Bundles 579



Sylius

(continued from previous page)

class SuppliersStatisticsFilterType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add(
'stats',
ChoiceType::class,
['choices' => range($options['range'][0], $options['range'][1])]

);
}

public function configureOptions(OptionsResolver $resolver)
{

$resolver
->setDefaults([

'range' => [0, 10],
])
->setAllowedTypes('range', ['array'])

;
}

}

Create a template for the filter, similar to the existing ones:

# app/Resources/views/Grid/Filter/suppliers_statistics.html.twig
{% form_theme form 'SyliusUiBundle:Form:theme.html.twig' %}

{{ form_row(form) }}

That is all. Now let’s register your new filter type as service.

# app/config/services.yml

services:
app.grid.filter.suppliers_statistics:

class: AppBundle\Grid\Filter\SuppliersStatisticsFilter
tags:

-
name: sylius.grid_filter
type: suppliers_statistics
form_type: AppBundle\Form\Type\Filter\SuppliersStatisticsFilterType

Now you can use your new filter type in the grid configuration!

sylius_grid:
grids:

app_tournament:
driver: doctrine/orm
resource: app.tournament
filters:

stats:
type: suppliers_statistics
form_options:

range: [0, 100]
templates:

filter:
suppliers_statistics: 'AppBundle:Grid/Filter:suppliers_statistics.html.

→˓twig' (continues on next page)

580 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

Custom Action

There are certain cases when built-in action types are not enough.

All you need to do is create your own action template and register it for the sylius_grid.

In the template we will specify the button’s icon to be mail and its colour to be purple.

{% import '@SyliusUi/Macro/buttons.html.twig' as buttons %}

{% set path = options.link.url|default(path(options.link.route, options.link.
→˓parameters)) %}

{{ buttons.default(path, action.label, null, 'mail', 'purple') }}

Now configure the new action’s template like below in the app/config/config.yml:

# app/config/config.yml
sylius_grid:

templates:
action:

contactSupplier: "@App/Grid/Action/contactSupplier.html.twig"

From now on you can use your new action type in the grid configuration!

Let’s assume that you already have a route for contacting your suppliers, then you can configure the grid action:

sylius_grid:
grids:

app_admin_supplier:
driver:

name: doctrine/orm
options:

class: AppBundle\Entity\Supplier
actions:

item:
contactSupplier:

type: contactSupplier
label: Contact Supplier
options:

link:
route: app_admin_contact_supplier
parameters:

id: resource.id

Custom Bulk Action

There are cases where pressing a button per item in a grid is not suitable. And there are also certain cases when built-in
bulk action types are not enough.

All you need to do is create your own bulk action template and register it for the sylius_grid.

In the template we will specify the button’s icon to be export and its colour to be orange.

9.1. Components & Bundles 581



Sylius

{% import '@SyliusUi/Macro/buttons.html.twig' as buttons %}

{% set path = options.link.url|default(path(options.link.route)) %}

{{ buttons.default(path, action.label, null, 'export', 'orange') }}

Now configure the new action’s template like below in the app/config/config.yml:

# app/config/config.yml
sylius_grid:

templates:
bulk_action:

export: "@App/Grid/BulkAction/export.html.twig"

From now on you can use your new bulk action type in the grid configuration!

Let’s assume that you already have a route for exporting by injecting ids, then you can configure the grid action:

sylius_grid:
grids:

app_admin_product:
...
actions:

bulk:
export:

type: export
label: Export Data
options:

link:
route: app_admin_product_export
parameters:

format: csv

Configuration Reference

Here you will find all configuration options of sylius_grid.

sylius_grid:
grids:

app_user: # Your grid name
driver:

name: doctrine/orm
options:

class: "%app.model.user%"
sorting:

name: asc
limits: [10, 25, 50, 100]
fields:

name:
type: twig # Type of field
label: Name # Label
path: . # dot means a whole object
sortable: ~ | field path
position: 100
options:

template: :Grid/Column:_name.html.twig # Only twig column

(continues on next page)

582 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

vars:
labels: # a template of how does the label look like

enabled: true
filters:

name:
type: string # Type of filter
label: app.ui.name
enabled: true
template: ~
position: 100
options:

fields: { }
form_options:

type: contains # type of string filtering option, if you one
→˓to have just one

default_value: ~
enabled:

type: boolean # Type of filter
label: app.ui.enabled
enabled: true
template: ~
position: 100
options:

field: enabled
form_options: { }
default_value: ~

date:
type: date # Type of filter
label: app.ui.created_at
enabled: true
template: ~
position: 100
options:

field: createdAt
form_options: { }
default_value: ~

channel:
type: entity # Type of filter
label: app.ui.channel
enabled: true
template: ~
position: 100
options:

fields: [channel]
form_options:

class: "%app.model.channel%"
default_value: ~

actions:
main:

create:
type: create
label: sylius.ui.create
enabled: true
icon: ~
position: 100

item:
update:

(continues on next page)

9.1. Components & Bundles 583



Sylius

(continued from previous page)

type: update
label: sylius.ui.edit
enabled: true
icon: ~
position: 100
options: { }

delete:
type: delete
label: sylius.ui.delete
enabled: true
icon: ~
position: 100
options: { }

show:
type: show
label: sylius.ui.show
enabled: true
icon: ~
position: 100
options:

link:
route: app_user_show
parameters:

id: resource.id
archive:

type: archive
label: sylius.ui.archive
enabled: true
icon: ~
position: 100
options:

restore_label: sylius.ui.restore
bulk:

delete:
type: delete
label: sylius.ui.delete
enabled: true
icon: ~
position: 100
options: { }

subitem:
addresses:

type: links
label: sylius.ui.manage_addresses
options:

icon: cubes
links:

index:
label: sylius.ui.list_addresses
icon: list
route: app_admin_user_address_index
visible: resource.hasAddress
parameters:

userId: resource.id
create:

label: sylius.ui.generate
icon: random

(continues on next page)

584 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

route: app_admin_user_address_create
parameters:

userId: resource.id

SyliusInventoryBundle

Flexible inventory management for Symfony applications.

With minimal configuration you can implement inventory tracking in your project.

It’s fully customizable, but the default setup should be optimal for most use cases.

There is StockableInterface and InventoryUnit model inside the bundle.

There are services AvailabilityChecker, InventoryOperator and InventoryChangeListener.

You’ll get familiar with them in later parts of this documentation.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download package.

If you have Composer installed globally.

$ composer require sylius/inventory-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/inventory-bundle

Adding required bundles to the kernel

First, you need to enable the bundle inside the kernel. If you’re not using any other Sylius bundles, you will also need
to add SyliusResourceBundle and its dependencies to the kernel. Don’t worry, everything was automatically installed
via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
// ...
new FOS\RestBundle\FOSRestBundle(),
new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),
new Sylius\Bundle\InventoryBundle\SyliusInventoryBundle(),

);
}

9.1. Components & Bundles 585

http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

Creating your entities

Let’s assume we want to implement a book store application and track the books inventory.

You have to create a Book and an InventoryUnit entity, living inside your application code. We think that keeping
the app-specific bundle structure simple is a good practice, so let’s assume you have your AppBundle registered
under App\Bundle\AppBundle namespace.

We will create Book entity.

<?php

// src/App/AppBundle/Entity/Book.php
namespace App\AppBundle\Entity;

use Sylius\Component\Inventory\Model\StockableInterface;
use Doctrine\ORM\Mapping as ORM;

/**
* @ORM\Entity

* @ORM\Table(name="app_book")

*/
class Book implements StockableInterface
{

/**
* @ORM\Id

* @ORM\Column(type="integer")

* @ORM\GeneratedValue(strategy="AUTO")

*/
protected $id;

/**
* @ORM\Column(type="string")

*/
protected $isbn;

/**
* @ORM\Column(type="string")

*/
protected $title;

/**
* @ORM\Column(type="integer")

*/
protected $onHand;

public function __construct()
{

$this->onHand = 1;
}

public function getId()
{

return $this->id;
}

public function getIsbn()
{

(continues on next page)

586 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

return $this->isbn;
}

public function setIsbn($isbn)
{

$this->isbn = $isbn;
}

public function getSku()
{

return $this->getIsbn();
}

public function getTitle()
{

return $this->title;
}

public function setTitle($title)
{

$this->title = $title;
}

public function getInventoryName()
{

return $this->getTitle();
}

public function isInStock()
{

return 0 < $this->onHand;
}

public function getOnHand()
{

return $this->onHand;
}

public function setOnHand($onHand)
{

$this->onHand = $onHand;
}

}

Note: This example shows the full power of StockableInterface.

In order to track the books inventory our Book entity must implement StockableInterface. Note that we added
->getSku() method which is alias to ->getIsbn(), this is the power of the interface, we now have full con-
trol over the entity mapping. In the same way ->getInventoryName() exposes the book title as the displayed
name for our stockable entity.

The next step requires the creating of the InventoryUnit entity, let’s do this now.

<?php

(continues on next page)

9.1. Components & Bundles 587



Sylius

(continued from previous page)

// src/App/AppBundle/Entity/InventoryUnit.php
namespace App\AppBundle\Entity;

use Sylius\Component\Inventory\Model\InventoryUnit as BaseInventoryUnit;
use Doctrine\ORM\Mapping as ORM;

/**
* @ORM\Entity

* @ORM\Table(name="app_inventory_unit")

*/
class InventoryUnit extends BaseInventoryUnit
{

/**
* @ORM\Id

* @ORM\Column(type="integer")

* @ORM\GeneratedValue(strategy="AUTO")

*/
protected $id;

}

Note that we are using base model from Sylius component, which means inheriting some functionality inventory
component provides. InventoryUnit holds the reference to stockable object, which is Book in our case. So, if we use
the InventoryOperator to create inventory units, they will reference the given book entity.

Container configuration

Put this configuration inside your app/config/config.yml.

sylius_inventory:
driver: doctrine/orm
resources:

inventory_unit:
classes:

model: App\AppBundle\Entity\InventoryUnit

Updating database schema

Remember to update your database schema.

For “doctrine/orm” driver run the following command.

$ php bin/console doctrine:schema:update --force

Warning: This should be done only in dev environment! We recommend using Doctrine migrations, to safely
update your schema.

Models

Here is a quick reference for the default models.

588 Chapter 9. Components & Bundles



Sylius

InventoryUnit

Each unit holds a reference to a stockable object and its state, which can be sold or returned. It also provides some
handy shortcut methods like isSold.

Stockable

In order to be able to track stock levels in your application, you must implement StockableInterface or use the Stockable
model. It uses the SKU to identify stockable and need to provide display name. It can get/set current stock level with
getOnHand and setOnHand methods.

Using the services

When using the bundle, you have access to several handy services.

AvailabilityChecker

The name speaks for itself, this service checks availability for given stockable object. AvailabilityChecker relies on
the current stock level.

There are two methods for checking availability. ->isStockAvailable() just checks whether stockable object
is available in stock and doesn’t care about quantity. ->isStockSufficient() checks if there is enough units in
the stock for given quantity.

InventoryOperator

Inventory operator is the heart of this bundle. It can be used to manage stock levels and inventory units. Creat-
ing/destroying inventory units with a given state is also the operators job.

Twig Extension

There are two handy twig functions bundled in: sylius_inventory_is_available and sylius_inventory_is_sufficient.

They are simple proxies to the availability checker, and can be used to show if the stockable object is avail-
able/sufficient.

Here is a simple example, note that product variable has to be an instance of StockableInterface.

{% if not sylius_inventory_is_available(product) %}
<span class="label label-important">out of stock</span>

{% endif %}

Summary

Configuration reference

9.1. Components & Bundles 589



Sylius

sylius_inventory:
# The driver used for persistence layer.
driver: ~
# Enable or disbale tracking inventory
track_inventory: true
# The availability checker service id.
checker: sylius.availability_checker.default
# The inventory operator service id.
operator: sylius.inventory_operator.default
# Array of events for InventoryChangeListener
events: ~
resources:

inventory_unit:
classes:

model: Sylius\Component\Inventory\Model\InventoryUnit
interface: Sylius\Component\Inventory\Model\InventoryUnitInterface
controller:

→˓Sylius\Bundle\InventoryBundle\Controller\InventoryUnitController
repository: ~ # You can override the repository class here.
factory: Sylius\Component\Resource\Factory\Factory

stockable:
classes:

model: ~ # The stockable model class.
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController

phpspec examples

$ composer install
$ bin/phpspec run -f pretty

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

Learn more

• Inventory in the Sylius platform - concept documentation

SyliusMailerBundle

Sending customizable e-mails has never been easier in Symfony.

You can configure different e-mail types in the YAML or in database. (and use YAML as fallback) This allows you to
send out e-mails with one simple method call, providing an unique code and data.

The bundle supports adapters, by default e-mails are rendered using Twig and sent via Swiftmailer, but you can easily
implement your own adapter and delegate the whole operation to external API.

This bundle provides easy integration of the Sylius Mailer component with any Symfony full-stack application.

590 Chapter 9. Components & Bundles

https://github.com/Sylius/Sylius/issues


Sylius

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download the package.

If you have Composer installed globally.

$ composer require sylius/mailer-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/mailer-bundle

Adding required bundles to the kernel

You need to enable the bundle inside the kernel.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle(),
new FOS\RestBundle\FOSRestBundle(),
new JMS\SerializerBundle\JMSSerializerBundle($this),
new Stof\DoctrineExtensionsBundle\StofDoctrineExtensionsBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),

new Sylius\Bundle\MailerBundle\SyliusMailerBundle(),
);

}

Container configuration

Put this configuration inside your app/config/config.yml.

sylius_mailer:
sender:

name: My website
address: no-reply@my-website.com

Congratulations! The bundle is now installed and ready to use.

Your First Email

Let’s say you want to send a notification to the website team when someone submits a new position to your movie
catalog website!

You can do it in few simple steps:

9.1. Components & Bundles 591

http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

Configure Your E-Mail

In your app/config/config.yml, under sylius_mailer you should configure the email:

# app/config/config.yml

sylius_mailer:
sender:

name: Movie Database Example
address: no-reply@movie-database-example.com

emails:
movie_added_notification:

subject: A new movie {{ movie.title }} has been submitted
template: AppBundle:Email:movieAddedNotification.html.twig

That’s it! Your unique code is “movie_added_notification”. Now, let’s create the template.

Creating Your Template

In your app/Resources/views/Email:movieAddedNotification.html.twig put the following
Twig code:

{% block subject %}
A new movie {{ movie.title }} has been submitted

{% endblock %}

{% block body %}
Hello Movie Database Example!

A new movie has been submitted for review to your database.

Title: {{ movie.title }}
Added by {{ user.name }}

Please review it and accept or reject!
{% endblock %}

That should be enough!

Sending The E-Mail

The service responsible for sending an e-mail has id sylius.email_sender. All you need to do is retrieve it
from the container or inject to a listener:

<?php

namespace App\AppBundle\Controller;

use Symfony\Component\HttpFoundation\Request;

class MovieController
{

public function submitAction(Request $request)
{

(continues on next page)

592 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

// Your code.

$this->get('sylius.email_sender')->send('movie_added_notification', array(
→˓'team@website.com'), array('movie' => $movie, 'user' => $this->getUser()));

}
}

Listener example:

<?php

namespace App\AppBundle\Controller;

use App\Event\MovieCreatedEvent;
use Sylius\Component\Mailer\Sender\SenderInterface;

class MovieNotificationListener
{

private $sender;

public function __construct(SenderInterface $sender)
{

$this->sender = $sender;
}

public function onMovieCreation(MovieCreatedEvent $event)
{

$movie = $event->getMovie();
$user = $event->getUser();

$this->sender->send('movie_added_notification', array('team@website.com'),
→˓array('movie' => $movie, 'user' => $user));

}
}

We recommend using events approach, but you can send e-mails from anywhere in your application. Enjoy!

Using Custom Adapter

There are certain use cases, where you do not want to send the e-mail from your app, but delegate the task to an
external API.

It is really simple with Adapters system!

Implement Your Adapter

Create your adapter class and add your custom logic for sending:

<?php

namespace App\Mailer\Adapter;

use Sylius\Component\Mailer\Sender\Adapter\AbstractAdapter;
use Sylius\Component\Mailer\Model\EmailInterface;

(continues on next page)

9.1. Components & Bundles 593



Sylius

(continued from previous page)

use Sylius\Component\Mailer\Renderer\RenderedEmail;

class CustomAdapter extends AbstractAdapter
{

public function send(array $recipients, $senderAddress, $senderName,
→˓RenderedEmail $renderedEmail, EmailInterface $email, array $data)

{
// Your custom logic.

}
}

Register New Adapter In Container

In your services.yml file, simply add your adapter definition.

services:
app.email_sender.adapter.custom:

parent: sylius.email_sender.adapter.abstract
class: App\Mailer\Adapter\CustomAdapter

Configure The New Adapter

Now you just need to put service name under sylius_mailer configuration in app/config/config.yml.

sylius_mailer:
sender_adapter: app.email_sender.adapter.custom

That’s it! Your new adapter will be used to send out e-mails. You can do whatever you want there!

Configuration reference

sylius_mailer:
sender_adapter: sylius.email_sender.adapter.swiftmailer # Adapter for sending e-

→˓mails.
renderer_adapter: sylius.email_renderer.adapter.twig # Adapter for rendering e-

→˓mails.
sender:

name: # Required - default sender name.
address: # Required - default sender e-mail address.

templates: # Your templates available for selection in backend!
label: Template path
label: Template path
label: Template path

emails:
your_email:

subject: Subject of your email
template: AppBundle:Email:yourEmail.html.twig
enabled: true/false
sender:

name: Custom name
address: Custom sender address for this e-mail

(continues on next page)

594 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

your_another_email:
subject: Subject of your another email
template: AppBundle:Email:yourAnotherEmail.html.twig
enabled: true/false
sender:

name: Custom name
address: Custom sender address for this e-mail

Learn more

• Emails in the Sylius platform - concept documentation

SyliusOrderBundle

This bundle is a foundation for sales order handling for Symfony projects. It allows you to use any model as the
merchandise.

It also includes a super flexible adjustments feature, which serves as a basis for any taxation, shipping charges or
discounts system.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download package.

If you have Composer installed globally.

$ composer require sylius/order-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/order-bundle

Adding required bundles to the kernel

First, you need to enable the bundle inside the kernel.

If you’re not using any other Sylius bundles, you will also need to add SyliusResourceBundle and its dependencies to
the kernel. Don’t worry, everything was automatically installed via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle()
new FOS\RestBundle\FOSRestBundle(),
new JMS\SerializerBundle\JMSSerializerBundle($this),

(continues on next page)

9.1. Components & Bundles 595

http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

(continued from previous page)

new Stof\DoctrineExtensionsBundle\StofDoctrineExtensionsBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),

new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),
new Sylius\Bundle\MoneyBundle\SyliusMoneyBundle(),
new Sylius\Bundle\OrderBundle\SyliusOrderBundle(),

// Other bundles...
new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),

);
}

Updating database schema

Remember to update your database schema.

For “doctrine/orm” driver run the following command.

$ php bin/console doctrine:schema:update --force

Warning: This should be done only in dev environment! We recommend using Doctrine migrations, to safely
update your schema.

The Order, OrderItem and OrderItemUnit

Here is a quick reference of what the default models can do for you.

Order basics

Each order has 2 main identifiers, an ID and a human-friendly number. You can access those by calling
->getId() and ->getNumber() respectively. The number is mutable, so you can change it by calling
->setNumber('E001') on the order instance.

<?php

$order->getId();
$order->getNumber();

$order->setNumber('E001');

Order totals

Note: All money amounts in Sylius are represented as “cents” - integers.

An order has 3 basic totals, which are all persisted together with the order.

The first total is the items total, it is calculated as the sum of all item totals (including theirs adjustments).

596 Chapter 9. Components & Bundles



Sylius

The second total is the adjustments total, you can read more about this in next chapter.

<?php

echo $order->getItemsTotal(); // 1900.
echo $order->getAdjustmentsTotal(); // -250.

$order->calculateTotal();
echo $order->getTotal(); // 1650.

The main order total is a sum of the previously mentioned values. You can access the order total value using the
->getTotal() method.

Note: It’s not needed to call calculateTotal() method, as both itemsTotal and adjustmentsTotal are
automatically updated after each operation that can influence their values.

Items management

The collection of items (Implementing the Doctrine\Common\Collections\Collection interface) can be
obtained using the ->getItems(). To add or remove items, you can simply use the addItem and removeItem
methods.

<?php

// $item1 and $item2 are instances of OrderItemInterface.
$order

->addItem($item)
->removeItem($item2)

;

OrderItem basics

An order item model has only the id as identifier, also it has the order to which it belongs, accessible via
->getOrder() method.

The sellable object can be retrieved and set, using the following setter and getter - ->getProduct() &
->setVariant(ProductVariantInterface $variant).

<?php

$item->setVariant($book);

Note: In most cases you’ll use the OrderBuilder service to create your orders.

Just like for the order, the total is available via the same method, but the unit price is accessible using the
->getUnitPrice() Each item also can calculate its total, using the quantity (->getQuantity()) and the
unit price.

Warning: Concept of OrderItemUnit allows better management of OrderItem’s quantity. Because of that,
it’s needed to use OrderItemQuantityModifier to handle quantity modification properly.

9.1. Components & Bundles 597



Sylius

<?php

$item = $itemRepository->createNew();
$item->setVariant($book);
$item->setUnitPrice(2000)

$orderItemQuantityModifier->modify($item, 4); //modifies item's quantity to 4

echo $item->getTotal(); // 8000.

An OrderItem can also hold adjustments.

Units management

Each element from units collection in OrderItem represents single, separate unit from order. It’s total is sum of its
item unit price and totals’ of each adjustments. Unit’s can be added and removed using addUnit and removeUnit
methods from OrderItem, but it’s highly recommended to use OrderItemQuantityModifier.

The Adjustments

Adjustments are based on simple but powerful idea inspired by Spree adjustments. They serve as foundation for any
tax, shipping and discounts systems.

Adjustment model

Note: To be written. Learn more in the Book.

Using the services

When using the bundle, you have access to several handy services. You can use them to retrieve and persist orders.

Managers and Repositories

Note: Sylius uses Doctrine\Common\Persistence interfaces.

You have access to following services which are used to manage and retrieve resources.

This set of default services is shared across almost all Sylius bundles, but this is just a convention. You’re interacting
with them like you usually do with own entities in your project.

<?php

// ObjectManager which is capable of managing the resources.
// For *doctrine/orm* driver it will be EntityManager.
$this->get('sylius.manager.order');
$this->get('sylius.manager.order_item');

(continues on next page)

598 Chapter 9. Components & Bundles

http://guides.spreecommerce.org/developer/adjustments.html


Sylius

(continued from previous page)

$this->get('sylius.manager.order_item_unit');
$this->get('sylius.manager.adjustment');

// ObjectRepository for the Order resource, it extends the base EntityRepository.
// You can use it like usual entity repository in project.
$this->get('sylius.repository.order');
$this->get('sylius.repository.order_item');
$this->get('sylius.repository.order_item_unit');
$this->get('sylius.repository.adjustment');

// Those repositories have some handy default methods, for example...
$item = $itemRepository->createNew();
$orderRepository->find(4);
$paginator = $orderRepository->createPaginator(array('confirmed' => false)); // Get
→˓Pagerfanta instance for all unconfirmed orders.

OrderItemQuantityModifier

OrderItemQuantityModifier should be used to modify OrderItem quantity, because of whole background
units’ logic, that needs to be done. This service handles this task, adding and removing proper amounts of units to
OrderItem.

<?php

$orderItemFactory = $this->get('sylius.factory.order_item');
$orderItemQuantityModifier = $this->get('sylius.order_item_quantity_modifier');

$orderItem = $orderItemFactory->createNew();
$orderItem->getQuantity(); // default quantity of order item is 0

$orderItem->setUnitPrice(1000);

$orderItemQuantityModifier->modify($orderItem, 4);

$orderItem->getQuantity(); // after using modifier, quantity is as expected
$orderItem->getTotal(); // item's total is sum of all units' total (units have
→˓been created by modifier)

$orderItemQuantityModifier->modify($orderItem, 2);

// OrderItemQuantityModifier can also reduce item's quantity and remove unnecessary
→˓units

$orderItem->getQuantity(); // 2
$orderItem->getTotal(); // 2000

Routing and default actions

Routing for cart-actions is available in the ShopBundle. The ShopBundle is not individually available but it is included
in the Sylius/Sylius repository. You can see the usage guide for these actions below.

9.1. Components & Bundles 599



Sylius

Cart summary page

To point user to the cart summary page, you can use the sylius_shop_cart_summary route. It will render the
page with the cart and form variables by default.

The cart is the current cart and form is the view of the cart form.

Adding cart item

In our simple example, we only need to add the following link in the places where we need the “add to cart button”.

<a href="{{ path('sylius_shop_cart_item_add', {'productId': product.id}) }}">Add
→˓product to cart</a>

Clicking this link will add the selected product to the cart.

Removing item

On the cart summary page you have access to all the cart items, so another simple link will allow a user to remove
items from the cart.

<a href="{{ path('sylius_shop_cart_item_remove', {'id': item.id}) }}">Remove from cart
→˓</a>

Where item variable represents one of the cart.items collection items.

Clearing the whole cart

Clearing the cart is simple as clicking the following link.

<a href="{{ path('sylius_shop_cart_clear')}}">Clear cart</a>

Basic cart update

On the cart summary page, you have access to the cart form, if you want to save it, simply submit the form with the
following action.

<form action="{{ path('sylius_shop_cart_save') }}" method="post">Save cart</a>

You cart will be validated and saved if everything is alright.

Summary

Note: To be written.

600 Chapter 9. Components & Bundles



Sylius

Configuration reference

sylius_order:
driver: doctrine/orm
resources:

order:
classes:

model: Sylius\Component\Core\Model\Order
controller: Sylius\Bundle\CoreBundle\Controller\OrderController
repository: Sylius\Bundle\CoreBundle\Doctrine\ORM\OrderRepository
form: Sylius\Bundle\CoreBundle\Form\Type\Order\OrderType
interface: Sylius\Component\Order\Model\OrderInterface
factory: Sylius\Component\Resource\Factory\Factory

order_item:
classes:

model: Sylius\Component\Core\Model\OrderItem
form: Sylius\Bundle\CoreBundle\Form\Type\Order\OrderItemType
interface: Sylius\Component\Order\Model\OrderItemInterface
controller: Sylius\Bundle\OrderBundle\Controller\OrderItemController
factory: Sylius\Component\Resource\Factory\Factory

order_item_unit:
classes:

model: Sylius\Component\Core\Model\OrderItemUnit
interface: Sylius\Component\Order\Model\OrderItemUnitInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Order\Factory\OrderItemUnitFactory

adjustment:
classes:

model: Sylius\Component\Order\Model\Adjustment
interface: Sylius\Component\Order\Model\AdjustmentInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory

order_sequence:
classes:

model: Sylius\Component\Order\Model\OrderSequence
interface: Sylius\Component\Order\Model\OrderSequenceInterface
factory: Sylius\Component\Resource\Factory\Factory

expiration:
cart: '2 days'
order: '5 days'

phpspec examples

$ composer install
$ bin/phpspec run -fpretty --verbose

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

9.1. Components & Bundles 601

https://github.com/Sylius/Sylius/issues


Sylius

Processors

Order processors are responsible of manipulating the orders to apply different predefined adjustments or other modi-
fications based on order state.

Registering custom processors

Once you have your own OrderProcessorInterface implementation you need to register it as a service.

<?xml version="1.0" encoding="UTF-8"?>

<container xmlns="http://symfony.com/schema/dic/services"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://symfony.com/schema/dic/services

http://symfony.com/schema/dic/services/services-1.0.xsd
→˓">

<services>
<service id="acme.order_processor.custom" class=

→˓"Acme\ShopBundle\OrderProcessor\CustomOrderProcessor">
<tag name="sylius.order_processor" priority="0" />

</service>
</services>

</container>

Note: You can add your own processor to the CompositeOrderProcessor using sylius.order_processor

Using CompositeOrderProcessor

All processor services containing sylius.order_processor tag can be launched as follows:

In a controller:

<?php

// Fetch order from DB
$order = ...;

// Get the processor from the container or inject the service
$orderProcessor = ...;

$orderProcessor->process($order);

Note: The CompositeOrderProcessor is named as ‘ sylius.order_processing.order_processor‘ in the container and
contains all services tagged as sylius.order_processor

Learn more

• Carts & Orders in the Sylius platform - concept documentation

602 Chapter 9. Components & Bundles



Sylius

SyliusProductBundle

The Sylius product catalog is made available as set of 2 standalone bundles. This component contains the most basic
product model with properties (attributes) support.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download the package.

If you have Composer installed globally.

$ composer require sylius/product-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/product-bundle

Adding required bundles to the kernel

You need to enable the bundle inside the kernel.

If you’re not using any other Sylius bundles, you will also need to add SyliusResourceBundle and its dependencies to
kernel. Don’t worry, everything was automatically installed via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new FOS\RestBundle\FOSRestBundle(),
new JMS\SerializerBundle\JMSSerializerBundle($this),
new Stof\DoctrineExtensionsBundle\StofDoctrineExtensionsBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),
new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle(),
new Sylius\Bundle\ProductBundle\SyliusProductBundle(),
new Sylius\Bundle\AttributeBundle\SyliusAttributeBundle(),
new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),
new Sylius\Bundle\LocaleBundle\SyliusLocaleBundle(),

// Other bundles...
new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),

);
}

Container configuration

Put this configuration inside your app/config/config.yml.

9.1. Components & Bundles 603

http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

stof_doctrine_extensions:
orm:

default:
sluggable: true
timestampable: true

Updating database schema

Run the following command.

$ php bin/console doctrine:schema:update --force

Warning: This should be done only in dev environment! We recommend using Doctrine migrations, to safely
update your schema.

Congratulations! The bundle is now installed and ready to use.

The Product

Retrieving products

Retrieving a product from the database should always happen via repository, which always implements
Sylius\Bundle\ResourceBundle\Model\RepositoryInterface. If you are using Doctrine, you’re
already familiar with this concept, as it extends the native Doctrine ObjectRepository interface.

Your product repository is always accessible via the sylius.repository.product service.

<?php

public function myAction(Request $request)
{

$repository = $this->container->get('sylius.repository.product');
}

Retrieving products is simple as calling proper methods on the repository.

<?php

public function myAction(Request $request)
{

$repository = $this->container->get('sylius.repository.product');

$product = $repository->find(4); // Get product with id 4, returns null if not
→˓found.

$product = $repository->findOneBy(array('slug' => 'my-super-product')); // Get
→˓one product by defined criteria.

$products = $repository->findAll(); // Load all the products!
$products = $repository->findBy(array('special' => true)); // Find products

→˓matching some custom criteria.
}

604 Chapter 9. Components & Bundles



Sylius

Product repository also supports paginating products. To create a Pagerfanta instance use the createPaginator
method.

<?php

public function myAction(Request $request)
{

$repository = $this->container->get('sylius.repository.product');

$products = $repository->createPaginator();
$products->setMaxPerPage(3);
$products->setCurrentPage($request->query->get('page', 1));

// Now you can return products to the template and iterate over it to get products
→˓from the current page.
}

The paginator also can be created for specific criteria and with desired sorting.

<?php

public function myAction(Request $request)
{

$repository = $this->container->get('sylius.repository.product');

$products = $repository->createPaginator(array('foo' => true), array('createdAt'
→˓=> 'desc'));

$products->setMaxPerPage(3);
$products->setCurrentPage($request->query->get('page', 1));

}

Creating new product object

To create new product instance, you can simply call createNew() method on the factory.

<?php

public function myAction(Request $request)
{

$factory = $this->container->get('sylius.factory.product');
$product = $factory->createNew();

}

Note: Creating a product via this factory method makes the code more testable, and allows you to change the product
class easily.

Saving & removing product

To save or remove a product, you can use any ObjectManagerwhich manages Product. You can always access it via
alias sylius.manager.product. But it’s also perfectly fine if you use doctrine.orm.entity_manager
or other appropriate manager service.

9.1. Components & Bundles 605

https://github.com/whiteoctober/Pagerfanta


Sylius

<?php

public function myAction(Request $request)
{

$factory = $this->container->get('sylius.factory.product');
$manager = $this->container->get('sylius.manager.product'); // Alias for

→˓appropriate doctrine manager service.

$product = $factory->createNew();

$product
->setName('Foo')
->setDescription('Nice product')

;

$manager->persist($product);
$manager->flush(); // Save changes in database.

}

To remove a product, you also use the manager.

<?php

public function myAction(Request $request)
{

$repository = $this->container->get('sylius.repository.product');
$manager = $this->container->get('sylius.manager.product');

$product = $repository->find(1);

$manager->remove($product);
$manager->flush(); // Save changes in database.

}

Properties

A product can also have a set of defined Properties (Attributes), you’ll learn about them in next chapter of this docu-
mentation.

Forms

The bundle ships with a set of useful form types for all models. You can use the defaults or override them with your
own forms.

Product form

The product form type is named sylius_product and you can create it whenever you need, using the form factory.

<?php

// src/Acme/ShopBundle/Controller/ProductController.php

(continues on next page)

606 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

namespace Acme\ShopBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;

class DemoController extends Controller
{

public function fooAction(Request $request)
{

$form = $this->get('form.factory')->create('sylius_product');
}

}

The default product form consists of following fields.

Field Type
name text
description textarea
metaDescription text
metaKeywords text

You can render each of these using the usual Symfony way {{ form_row(form.description) }}.

Summary

Configuration reference

sylius_product:
driver: doctrine/orm
resources:

product:
classes:

model: Sylius\Component\Core\Model\Product
repository: Sylius\Bundle\CoreBundle\Doctrine\ORM\ProductRepository
form: Sylius\Bundle\CoreBundle\Form\Type\Product\ProductType
interface: Sylius\Component\Product\Model\ProductInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Product\Factory\ProductFactory

translation:
classes:

model: Sylius\Component\Core\Model\ProductTranslation
form:

→˓Sylius\Bundle\CoreBundle\Form\Type\Product\ProductTranslationType
interface:

→˓Sylius\Component\Product\Model\ProductTranslationInterface
controller:

→˓Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory

product_variant:
classes:

model: Sylius\Component\Core\Model\ProductVariant
repository:

→˓Sylius\Bundle\ProductBundle\Doctrine\ORM\ProductVariantRepository

(continues on next page)

9.1. Components & Bundles 607



Sylius

(continued from previous page)

form: Sylius\Bundle\CoreBundle\Form\Type\Product\ProductVariantType
interface: Sylius\Component\Product\Model\ProductVariantInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Product\Factory\ProductVariantFactory

product_option:
classes:

repository:
→˓Sylius\Bundle\ProductBundle\Doctrine\ORM\ProductOptionRepository

model: Sylius\Component\Product\Model\ProductOption
interface: Sylius\Component\Product\Model\ProductOptionInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\TranslatableFactory
form: Sylius\Bundle\ProductBundle\Form\Type\ProductOptionType

translation:
classes:

model: Sylius\Component\Product\Model\ProductOptionTranslation
interface:

→˓Sylius\Component\Product\Model\ProductOptionTranslationInterface
controller:

→˓Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form:

→˓Sylius\Bundle\ProductBundle\Form\Type\ProductOptionTranslationType
product_option_value:

classes:
model: Sylius\Component\Product\Model\ProductOptionValue
interface: Sylius\Component\Product\Model\ProductOptionValueInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\TranslatableFactory
form: Sylius\Bundle\ProductBundle\Form\Type\ProductOptionValueType

translation:
classes:

model:
→˓Sylius\Component\Product\Model\ProductOptionValueTranslation

interface:
→˓Sylius\Component\Product\Model\ProductOptionValueTranslationInterface

controller:
→˓Sylius\Bundle\ResourceBundle\Controller\ResourceController

factory: Sylius\Component\Resource\Factory\Factory
form:

→˓Sylius\Bundle\ProductBundle\Form\Type\ProductOptionValueTranslationType
product_association:

classes:
model: Sylius\Component\Product\Model\ProductAssociation
interface: Sylius\Component\Product\Model\ProductAssociationInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\ProductBundle\Form\Type\ProductAssociationType

product_association_type:
classes:

model: Sylius\Component\Product\Model\ProductAssociationType
interface:

→˓Sylius\Component\Product\Model\ProductAssociationTypeInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\ProductBundle\Form\Type\ProductAssociationTypeType

608 Chapter 9. Components & Bundles



Sylius

Tests

$ composer install
$ bin/phpspec run -fpretty --verbose

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

Learn more

• Products in the Sylius platform - concept documentation

SyliusPromotionBundle

Promotions system for Symfony applications.

With minimal configuration you can introduce promotions and coupons into your project. The following types of
promotions are available and totally mixable:

• percentage discounts

• fixed amount discounts

• promotions limited by time

• promotions limited by a maximum number of usages

• promotions based on coupons

This means you can for instance create the following promotions :

• 20$ discount for New Year orders having more than 3 items

• 8% discount for Christmas orders over 100 EUR

• first 3 orders have 100% discount

• 5% discount this week with the coupon code WEEK5

• 40C discount with the code you have received by mail

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download the package.

If you have Composer installed globally.

$ composer require sylius/promotion-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/promotion-bundle

9.1. Components & Bundles 609

https://github.com/Sylius/Sylius/issues
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

Adding required bundles to the kernel

You need to enable the bundle inside the kernel.

If you’re not using any other Sylius bundles, you will also need to add SyliusResourceBundle and its depen-
dencies to kernel. Don’t worry, everything was automatically installed via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new FOS\RestBundle\FOSRestBundle(),
new JMS\SerializerBundle\JMSSerializerBundle($this),
new Stof\DoctrineExtensionsBundle\StofDoctrineExtensionsBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),
new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle(),
new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),
new Sylius\Bundle\PromotionBundle\SyliusPromotionBundle(),

// Other bundles...
new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),

);
}

Promotion Subject configuration

Note: You need to have a class that is registered as a sylius_resource. It can be for example a
CarRentalOrderClass.

• Make your CarRentalOrder class implement the PromotionSubjectInterface.

Put its configuration inside your app/config/config.yml.

# app/config/config.yml
sylius_promotion:

resources:
promotion_subject:

classes:
model: AppBundle\Entity\CarRentalOrder

And configure doctrine extensions which are used by the bundle.

# app/config/config.yml
stof_doctrine_extensions:

orm:
default:

timestampable: true

Congratulations! The bundle is now installed and ready to use.

610 Chapter 9. Components & Bundles



Sylius

Models

All the models of this bundle are defined in Sylius\Component\Promotion\Model.

PromotionRule

A PromotionRule is used to check if your order is eligible to the promotion. A promotion can have none, one or
several rules. SyliusPromotionBundle comes with 2 types of rules :

• cart quantity rule : quantity of the order is checked

• item total rule : the amount of the order is checked

A rule is configured via the configuration attribute which is an array serialized into database. For cart quantity
rules, you have to configure the count key, whereas the amount key is used for item total rules. Configuration is
always strict, which means, that if you set count to 4 for cart quantity rule, orders with equal or more than 4 quantity
will be eligible.

PromotionAction

An PromotionAction defines the nature of the discount. Common actions are :

• percentage discount

• fixed amount discount

An action is configured via the configuration attribute which is an array serialized into database. For percentage
discount actions, you have to configure the percentage key, whereas the amount key is used for fixed discount
rules.

PromotionCoupon

A PromotionCoupon is a ticket having a code that can be exchanged for a financial discount. A promotion can
have none, one or several coupons.

A coupon is considered as valid if the method isValid() returns true. This method checks the number of times
this coupon can be used (attribute usageLimit), the number of times this has already been used (attribute used)
and the coupon expiration date (attribute expiresAt). If usageLimit is not set, the coupon will be usable an
unlimited times.

PromotionSubjectInterface

A PromotionSubjectInterface is the object you want to apply the promotion on. For instance, in Sylius
Standard, a Sylius\Component\Core\Model\Order can be subject to promotions.

By implementing PromotionSubjectInterface, your object will have to define the follow-
ing methods : - getPromotionSubjectItemTotal() should return the amount of your or-
der - getPromotionSubjectItemCount() should return the number of items of your order -
getPromotionCoupon() should return the coupon linked to your order. If you do not want to use coupon, simply
return null.

9.1. Components & Bundles 611



Sylius

Promotion

The Promotion is the main model of this bundle. A promotion has a name, a description and :

• can have none, one or several rules

• should have at least one action to be effective

• can be based on coupons

• can have a limited number of usages by using the attributes usageLimit and used. When used reaches
usageLimit the promotion is no longer valid. If usageLimit is not set, the promotion will be usable an
unlimited times.

• can be limited by time by using the attributes startsAt and endsAt

How are rules checked ?

Everything related to this subject is located in Sylius\Component\Promotion\Checker.

Rule checkers

New rules can be created by implementing RuleCheckerInterface. This interface provides the method
isEligible which aims to determine if the promotion subject respects the current rule or not.

I told you before that SyliusPromotionBundle ships with 2 types of rules : cart quantity rule and item total rule.

Cart quantity rule is defined via the service sylius.promotion_rule_checker.cart_quantity
which uses the class CartQuantityRuleChecker. The method isEligible checks here if
the promotion subject has the minimum quantity (method getPromotionSubjectItemCount() of
PromotionSubjectInterface) required by the rule.

Item total rule is defined via the service sylius.promotion_rule_checker.item_total which uses
the class ItemTotalRuleChecker. The method isEligible checks here if the promotion subject has the
minimum amount (method getPromotionSubjectItemTotal() of PromotionSubjectInterface) re-
quired by the rule.

The promotion eligibility checker service

To be eligible to a promotion, a subject must :

1. respect all the rules related to the promotion

2. respect promotion dates if promotion is limited by time

3. respect promotions usages count if promotion has a limited number of usages

4. if a coupon is provided with this order, it must be valid and belong to this promotion

The service sylius.promotion_eligibility_checker checks all these constraints for you
with the method isEligible() which returns true or false. This service uses the class
CompositePromotionEligibilityChecker.

How actions are applied ?

Everything related to this subject is located in Sylius\Component\Promotion\Action.

612 Chapter 9. Components & Bundles



Sylius

Actions

Actions can be created by implementing PromotionActionCommandInterface. This interface pro-
vides the method execute which aim is to apply a promotion to its subject. It also provides the method
getConfigurationFormType which has to return the form name related to this action.

Actions have to be defined as services and have to use the tag named sylius.promotion_action with the
attributes type and label.

As SyliusPromotionBundle is totally independent, it does not provide actions out of the box.

Note: Sylius\Component\Core\Promotion\Action\FixedDiscountPromotionActionCommand
from Sylius/Sylius-Standard is an example of action for a fixed amount discount. The related service is
called sylius.promotion_action.fixed_discount.

Note: Sylius\Component\Core\Promotion\Action\PercentageDiscountPromotionActionCommand
from Sylius/Sylius-Standard is an example of action for a discount based on percentage. The related service
is called sylius.promotion_action.percentage_discount.

Learn more about actions in the promotions concept documentation and in the Cookbook.

Applying actions to promotions

We have seen above how actions can be created. Now let’s see how they are applied to their subject.

The PromotionApplicator is responsible of this via its method apply. This method will execute all the
registered actions of a promotion on a subject.

How promotions are applied ?

By using the promotion eligibility checker and the promotion applicator checker services, the promotion processor
applies all the possible promotions on a subject.

The promotion processor is defined via the service sylius.promotion_processor which uses the class
Sylius\Component\Promotion\Processor\PromotionProcessor. Basically, it calls the method
apply of the promotion applicator for all the active promotions that are eligible to the given subject.

Coupon based promotions

Coupon based promotions require special needs that are covered by this documentation.

Coupon generator

SyliusPromotionBundle provides a way of generating coupons for a promotion : the coupon
generator. Provided as a service sylius.promotion_coupon_generator via the class
Sylius\Component\Promotion\Generator\PromotionCouponGenerator, its goal is to gener-
ate unique coupon codes.

9.1. Components & Bundles 613



Sylius

PromotionCoupon controller

The Sylius\Bundle\PromotionBundle\Controller\PromotionCouponController provides a
method for generating new coupons.

Summary

sylius_promotion:
driver: doctrine/orm
resources:

promotion_subject:
classes:

model: Sylius\Component\Core\Model\Order
promotion:

classes:
model: Sylius\Component\Promotion\Model\Promotion
interface: Sylius\Component\Promotion\Model\PromotionInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\PromotionBundle\Form\Type\PromotionType

promotion_rule:
classes:

factory: Sylius\Component\Core\Factory\PromotionRuleFactory
model: Sylius\Component\Promotion\Model\PromotionRule
interface: Sylius\Component\Promotion\Model\PromotionRuleInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\PromotionBundle\Form\Type\PromotionRuleType

promotion_coupon:
classes:

model: Sylius\Component\Promotion\Model\PromotionAction
interface: Sylius\Component\Promotion\Model\PromotionActionInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\PromotionBundle\Form\Type\PromotionActionType

promotion_action:
classes:

model: Sylius\Component\Promotion\Model\Coupon
interface: Sylius\Component\Promotion\Model\CouponInterface
controller:

→˓Sylius\Bundle\PromotionBundle\Controller\PromotionCouponController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\PromotionBundle\Form\Type\PromotionActionType

phpspec examples

$ composer install
$ bin/phpspec run -fpretty --verbose

614 Chapter 9. Components & Bundles



Sylius

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

Learn more

• Promotions in the Sylius platform - concept documentation

SyliusResourceBundle

There are plenty of things you need to handle for every single Resource in your web application.

Several “Admin Generators” are available for Symfony, but we needed something really simple, that will allow us to
have reusable controllers but preserve the performance and standard Symfony workflow. We did not want to generate
any code or write “Admin” class definitions in PHP. The big goal was to have exactly the same workflow as with
writing controllers manually but without actually creating them!

Another idea was not to limit ourselves to a single persistence backend. Resource component provides us with
generic purpose persistence services and you can use this bundle with multiple persistence backends. So far we
support:

• Doctrine ORM

• Doctrine MongoDB ODM

• Doctrine PHPCR ODM

• InMemory

• ElasticSearch (via an extension)

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download the package.

If you have Composer installed globally.

$ composer require sylius/resource-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/resource-bundle

Adding Required Bundles to The Kernel

You need to enable the bundle and its dependencies in the kernel:

<?php

// app/AppKernel.php

public function registerBundles()

(continues on next page)

9.1. Components & Bundles 615

https://github.com/Sylius/Sylius/issues
https://github.com/Sylius/SyliusElasticSearchPlugin
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

(continued from previous page)

{
$bundles = array(

new FOS\RestBundle\FOSRestBundle(),
new JMS\SerializerBundle\JMSSerializerBundle($this),
new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),
new Bazinga\Bundle\HateoasBundle\BazingaHateoasBundle(),
new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle(),

);
}

That’s it! Now you can configure your first resource.

Configuring Your Resources

Now you need to configure your first resource. Let’s assume you have a Book entity in your application and it has
simple fields:

• id

• title

• author

• description

Tip: You can see a full exemplary configuration of a typical resource here, in the “How to add a custom model?”
cookbook.

Implement the ResourceInterface in your model class.

<?php

namespace AppBundle\Entity;

use Sylius\Component\Resource\Model\ResourceInterface;

class Book implements ResourceInterface
{

// Most of the time you have the code below already in your class.
protected $id;

public function getId()
{

return $this->id;
}

}

Configure the class as a resource.

In your app/config/config.yml add:

616 Chapter 9. Components & Bundles



Sylius

sylius_resource:
resources:

app.book:
classes:

model: AppBundle\Entity\Book

That’s it! Your Book entity is now registered as Sylius Resource.

You can also configure several doctrine drivers.

Note: Remember that the doctrine/orm driver is used by default.

sylius_resource:
drivers:

- doctrine/orm
- doctrine/phpcr-odm

resources:
app.book:

classes:
model: AppBundle\Entity\Book

app.article:
driver: doctrine/phpcr-odm
classes:

model: AppBundle\Document\ArticleDocument

Generate API routing.

Tip: Learn more about using Sylius REST API in these articles: REST API Reference, How to use Sylius API? -
Cookbook.

Add the following lines to app/config/routing.yml:

app_book:
resource: |

alias: app.book
type: sylius.resource_api

After that a full JSON/XML CRUD API is ready to use. Sounds crazy? Spin up the built-in server and give it a try:

$ php bin/console server:run

You should see something like:

Server running on http://127.0.0.1:8000

Quit the server with CONTROL-C.

Now, in a separate Terminal window, call these commands:

9.1. Components & Bundles 617



Sylius

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title": "Lord of The Rings
→˓", "author": "J. R. R. Tolkien", "description": "Amazing!"}' http://localhost:8000/
→˓books/
$ curl -i -X GET -H "Accept: application/json" http://localhost:8000/books/

As you can guess, other CRUD actions are available through this API.

Generate web routing.

What if you want to render HTML pages? That’s easy! Update the routing configuration:

app_book:
resource: |

alias: app.book
type: sylius.resource

This will generate routing for HTML views.

Run the debug:router command to see available routes:

$ php bin/console debug:router

------------------------ --------------- -------- ------ -------------------------
Name Method Scheme Host Path
------------------------ --------------- -------- ------ -------------------------
app_book_show GET ANY ANY /books/{id}
app_book_index GET ANY ANY /books/
app_book_create GET|POST ANY ANY /books/new
app_book_update GET|PUT|PATCH ANY ANY /books/{id}/edit
app_book_delete DELETE ANY ANY /books/{id}

Tip: Do you need views for your newly created entity? Read more about Grids, which are a separate bundle of
Sylius, but may be very useful for views generation.

You can configure more options for the routing generation but you can also define each route manually to have it fully
configurable. Continue reading to learn more!

Services

When you register an entity as a resource, several services are registered for you. For the app.book resource, the
following services are available:

• app.controller.book - instance of ResourceController;

• app.factory.book - instance of FactoryInterface;

• app.repository.book - instance of RepositoryInterface;

• app.manager.book - alias to an appropriate Doctrine’s ObjectManager.

Routing

SyliusResourceBundle ships with a custom route loader that can save you some time.

618 Chapter 9. Components & Bundles



Sylius

Generating Generic CRUD Routing

To generate a full CRUD routing, simply configure it in your app/config/routing.yml:

app_book:
resource: |

alias: app.book
type: sylius.resource

Results in the following routes:

$ php bin/console debug:router

------------------------ --------------- -------- ------ -------------------------
Name Method Scheme Host Path
------------------------ --------------- -------- ------ -------------------------
app_book_show GET ANY ANY /books/{id}
app_book_index GET ANY ANY /books/
app_book_create GET|POST ANY ANY /books/new
app_book_update GET|PUT|PATCH ANY ANY /books/{id}/edit
app_book_delete DELETE ANY ANY /books/{id}

Using a Custom Path

By default, Sylius will use a plural form of the resource name, but you can easily customize the path:

app_book:
resource: |

alias: app.book
path: library

type: sylius.resource

Results in the following routes:

$ php bin/console debug:router

------------------------ --------------- -------- ------ -------------------------
Name Method Scheme Host Path
------------------------ --------------- -------- ------ -------------------------
app_book_show GET ANY ANY /library/{id}
app_book_index GET ANY ANY /library/
app_book_create GET|POST ANY ANY /library/new
app_book_update GET|PUT|PATCH ANY ANY /library/{id}/edit
app_book_delete DELETE ANY ANY /library/{id}

Generating API CRUD Routing

To generate a full API-friendly CRUD routing, add these YAML lines to your app/config/routing.yml:

app_book:
resource: |

alias: app.book
type: sylius.resource_api

Results in the following routes:

9.1. Components & Bundles 619



Sylius

$ php bin/console debug:router

------------------------ --------------- -------- ------ -------------------------
Name Method Scheme Host Path
------------------------ --------------- -------- ------ -------------------------
app_book_show GET ANY ANY /books/{id}
app_book_index GET ANY ANY /books/
app_book_create POST ANY ANY /books/
app_book_update PUT|PATCH ANY ANY /books/{id}
app_book_delete DELETE ANY ANY /books/{id}

Excluding Routes

If you want to skip some routes, simply use except configuration:

app_book:
resource: |

alias: app.book
except: ['delete', 'update']

type: sylius.resource

Results in the following routes:

$ php bin/console debug:router

------------------------ --------------- -------- ------ -------------------------
Name Method Scheme Host Path
------------------------ --------------- -------- ------ -------------------------
app_book_show GET ANY ANY /books/{id}
app_book_index GET ANY ANY /books/
app_book_create GET|POST ANY ANY /books/new

Generating Only Specific Routes

If you want to generate only some specific routes, simply use the only configuration:

app_book:
resource: |

alias: app.book
only: ['show', 'index']

type: sylius.resource

Results in the following routes:

$ php bin/console debug:router

------------------------ --------------- -------- ------ -------------------------
Name Method Scheme Host Path
------------------------ --------------- -------- ------ -------------------------
app_book_show GET ANY ANY /books/{id}
app_book_index GET ANY ANY /books/

620 Chapter 9. Components & Bundles



Sylius

Generating Routing for a Section

Sometimes you want to generate routing for different “sections” of an application:

app_admin_book:
resource: |

alias: app.book
section: admin

type: sylius.resource
prefix: /admin

app_library_book:
resource: |

alias: app.book
section: library
only: ['show', 'index']

type: sylius.resource
prefix: /library

The generation results in the following routes:

$ php bin/console debug:router

------------------------ --------------- -------- ------ -------------------------
Name Method Scheme Host Path
------------------------ --------------- -------- ------ -------------------------
app_admin_book_show GET ANY ANY /admin/books/{id}
app_admin_book_index GET ANY ANY /admin/books/
app_admin_book_create GET|POST ANY ANY /admin/books/new
app_admin_book_update GET|PUT|PATCH ANY ANY /admin/books/{id}/edit
app_admin_book_delete DELETE ANY ANY /admin/books/{id}
app_library_book_show GET ANY ANY /library/books/{id}
app_library_book_index GET ANY ANY /library/books/

Using Custom Templates

By default, ResourceController will use the templates namespace you have configured for the resource. You
can easily change that per route, but it is also easy when you generate the routing:

app_admin_book:
resource: |

alias: app.book
section: admin
templates: Admin/Book

type: sylius.resource
prefix: /admin

Following templates will be used for actions:

• :app/Resources/views/Admin/Book:show.html.twig

• :app/Resources/views/Admin/Book:index.html.twig

• :app/Resources/views/Admin/Book:create.html.twig

• :app/Resources/views/Admin/Book:update.html.twig

9.1. Components & Bundles 621



Sylius

Using a Custom Form

If you want to use a custom form:

app_book:
resource: |

alias: app.book
form: AppBundle/Form/Type/AdminBookType

type: sylius.resource

create and update actions will use AppBundle/Form/Type/AdminBookType form type.

Note: Remember, that if your form type has some dependencies you have to declare it as a service and tag with
name: form.type. You can read more about it here

Using a Custom Redirect

By default, after successful resource creation or update, Sylius will redirect to the show route and fallback to index
if it does not exist. If you want to change that behavior, use the following configuration:

app_book:
resource: |

alias: app.book
redirect: update

type: sylius.resource

API Versioning

One of the ResourceBundle dependencies is JMSSerializer, which provides a useful functionality of object versioning.
It is possible to take an advantage of it almost out of the box. If you would like to return only the second version of
your object serializations, use the following snippet:

app_book:
resource: |

alias: app.book
serialization_version: 2

type: sylius.resource_api

What is more, you can use a path variable to dynamically change your request. You can achieve this by setting a path
prefix when importing file or specify it in the path option.

app_book:
resource: |

alias: app.book
serialization_version: $version

type: sylius.resource_api

Note: Remember that a dynamically resolved books prefix is no longer available when you specify path, and it has
to be defined manually.

622 Chapter 9. Components & Bundles

http://docs.sylius.com/en/latest/components_and_bundles/bundles/SyliusResourceBundle/forms.html#custom-resource-form
http://jmsyst.com/libs/serializer/master/cookbook/exclusion_strategies#versioning-objects


Sylius

Using a Custom Criteria

Sometimes it is convenient to add some additional constraint when resolving resources. For example, one could want
to present a list of all books from some library (which id would be a part of path). Assuming that the path prefix is
/libraries/{libraryId}, if you would like to list all books from this library, you could use the following snippet:

app_book:
resource: |

alias: app.book
criteria:

library: $libraryId
type: sylius.resource

Which will result in the following routes:

$ php bin/console debug:router

------------------------ --------------- -------- ------ -----------------------------
→˓----------
Name Method Scheme Host Path
------------------------ --------------- -------- ------ -----------------------------
→˓----------
app_book_show GET ANY ANY /libraries/{libraryId}/books/
→˓{id}
app_book_index GET ANY ANY /libraries/{libraryId}/books/
app_book_create GET|POST ANY ANY /libraries/{libraryId}/books/
→˓new
app_book_update GET|PUT|PATCH ANY ANY /libraries/{libraryId}/books/
→˓{id}/edit
app_book_delete DELETE ANY ANY /libraries/{libraryId}/books/
→˓{id}

Using a Custom Identifier

As you could notice the generated routing resolves resources by the id field. But sometimes it is more convenient to
use a custom identifier field instead, let’s say a code (or any other field of your choice which can uniquely identify
your resource). If you want to look for books by isbn, use the following configuration:

app_book:
resource: |

identifier: isbn
alias: app.book
criteria:

isbn: $isbn
type: sylius.resource

Which will result in the following routes:

$ php bin/console debug:router

------------------------ --------------- -------- ------ -------------------------
Name Method Scheme Host Path
------------------------ --------------- -------- ------ -------------------------
app_book_show GET ANY ANY /books/{isbn}
app_book_index GET ANY ANY /books/

(continues on next page)

9.1. Components & Bundles 623



Sylius

(continued from previous page)

app_book_create GET|POST ANY ANY /books/new
app_book_update GET|PUT|PATCH ANY ANY /books/{isbn}/edit
app_book_delete DELETE ANY ANY /books/{isbn}

Forms

Have you noticed how Sylius generates forms for you? Of course, for many use-cases you may want to create a custom
form.

Custom Resource Form

Create a FormType class for your resource

<?php

namespace AppBundle\Form\Type;

use Sylius\Bundle\ResourceBundle\Form\Type\AbstractResourceType;
use Symfony\Component\Form\FormBuilderInterface;

class BookType extends AbstractResourceType
{

/**
* {@inheritdoc}

*/
public function buildForm(FormBuilderInterface $builder, array $options)
{

// Build your custom form, with all fields that you need
$builder->add('title', TextType::class);

}

/**
* {@inheritdoc}

*/
public function getBlockPrefix()
{

return 'app_book';
}

}

Note: The getBlockPrefix method returns the prefix of the template block name for this type.

Register the FormType as a service

Warning: the registration of a form type is only needed when the form is extending the
AbstractResourceType or when it has some custom constructor dependencies.

624 Chapter 9. Components & Bundles



Sylius

app.book.form.type:
class: AppBundle\Form\Type\BookType
tags:

- { name: form.type }
arguments: ['%app.model.book.class%', '%app.book.form.type.validation_groups%']

Configure the form for your resource

sylius_resource:
resources:

app.book:
classes:

model: AppBundle\Entity\Book
form: AppBundle\Form\Type\BookType

That’s it. Your new class will be used for all forms!

Getting a Single Resource

Your newly created controller service supports basic CRUD operations and is configurable via routing.

The simplest action is showAction. It is used to display a single resource. To use it, the only thing you need to do is
register a proper route.

Let’s assume that you have a app.book resource registered. To display a single Book, define the following routing:

# app/config/routing.yml

app_book_show:
path: /books/{id}
methods: [GET]
defaults:

_controller: app.controller.book:showAction

Done! Now when you go to /books/3, ResourceController will use the repository (app.repository.book) to
find a Book with the given id (3). If the requested book resource does not exist, it will throw a 404 Not Found
exception.

When a Book is found, the default template will be rendered - App:Book:show.html.twig (like you config-
ured it in the config.yml) with the Book result as the book variable. That’s the most basic usage of the simple
showAction.

Using a Custom Template

Okay, but what if you want to display the same Book resource, but with a different representation in a view?

# routing.yml

app_admin_book_show:
path: /admin/books/{id}
methods: [GET]
defaults:

_controller: app.controller.book:showAction

(continues on next page)

9.1. Components & Bundles 625



Sylius

(continued from previous page)

_sylius:
template: Admin/Book/show.html.twig

Nothing more to do here, when you go to /admin/books/3, the controller will try to find the Book and render it
using the custom template you specified under the route configuration. Simple, isn’t it?

Overriding Default Criteria

Displaying books by id can be boring. . . and let’s say we do not want to allow viewing disabled books. There is a
solution for that!

# routing.yml

app_book_show:
path: /books/{title}
methods: [GET]
defaults:

_controller: app.controller.book:showAction
_sylius:

criteria:
title: $title
enabled: true

With this configuration, the controller will look for a book with the given title and exclude disabled books. Internally,
it simply uses the $repository->findOneBy(array $criteria) method to look for the resource.

Using Custom Repository Methods

By default, resource repository uses findOneBy(array $criteria), but in some cases it’s not enough - for example -
you want to do proper joins or use a custom query. Creating yet another action to change the method called could be
a solution but there is a better way. The configuration below will use a custom repository method to get the resource.

# routing.yml

app_book_show:
path: /books/{author}
methods: [GET]
defaults:

_controller: app.controller.book:showAction
_sylius:

repository:
method: findOneNewestByAuthor
arguments: [$author]

Internally, it simply uses the $repository->findOneNewestByAuthor($author)method, where author
is taken from the current request.

Configuration Reference

# routing.yml

(continues on next page)

626 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

app_book_show:
path: /books/{author}
methods: [GET]
defaults:

_controller: app.controller.book:showAction
_sylius:

template: Book/show.html.twig
repository:

method: findOneNewestByAuthor
arguments: [$author]

criteria:
enabled: true

serialization_groups: [Custom, Details]
serialization_version: 1.0.2

Getting a Collection of Resources

To get a paginated list of Books, we will use indexAction of our controller. In the default scenario, it will return an
instance of paginator, with a list of Books.

# app/config/routing.yml

app_book_index:
path: /books
methods: [GET]
defaults:

_controller: app.controller.book:indexAction

When you go to /books, the ResourceController will use the repository (app.repository.book) to create
a paginator. The default template will be rendered - App:Book:index.html.twig with the paginator as the
books variable.

A paginator can be a simple array, if you disable the pagination, otherwise it is an instance of
Pagerfanta\Pagerfanta which is a library used to manage the pagination.

Overriding the Template and Criteria

Just like for the showAction, you can override the default template and criteria.

# app/config/routing.yml

app_book_index_inactive:
path: /books/disabled
methods: [GET]
defaults:

_controller: app.controller.book:indexAction
_sylius:

criteria:
enabled: false

template: Book/disabled.html.twig

This action will render a custom template with a paginator only for disabled Books.

9.1. Components & Bundles 627

https://github.com/whiteoctober/Pagerfanta


Sylius

Sorting

Except filtering, you can also sort Books.

# app/config/routing.yml

app_book_index_top:
path: /books/top
methods: [GET]
defaults:

_controller: app.controller.book:indexAction
_sylius:

sortable: true
sorting:

score: desc
template: Book/top.html.twig

Under that route, you can paginate over the Books by their score.

Using a Custom Repository Method

You can define your own repository method too, you can use the same way explained in show_resource.

Note: If you want to paginate your resources you need to use
EntityRepository::getPaginator($queryBuilder). It will transform your doctrine query builder into
Pagerfanta\Pagerfanta object.

Changing the “Max Per Page” Option of Paginator

You can also control the “max per page” for paginator, using paginate parameter.

# app/config/routing.yml

app_book_index_top:
path: /books/top
methods: [GET]
defaults:

_controller: app.controller.book:indexAction
_sylius:

paginate: 5
sortable: true
sorting:

score: desc
template: Book/top.html.twig

This will paginate 5 books per page, where 10 is the default.

Disabling Pagination - Getting a Simple Collection

Pagination is handy, but you do not always want to do it, you can disable pagination and simply request a collection
of resources.

628 Chapter 9. Components & Bundles

http://docs.sylius.com/en/latest/components_and_bundles/bundles/SyliusResourceBundle/show_resource.html#using-custom-repository-methods


Sylius

# app/config/routing.yml

app_book_index_top3:
path: /books/top
methods: [GET]
defaults:

_controller: app.controller.book:indexAction
_sylius:

paginate: false
limit: 3
sortable: true
sorting:

score: desc
template: Book/top3.html.twig

That action will return the top 3 books by score, as the books variable.

Configuration Reference

# app/config/routing.yml

app_book_index:
path: /{author}/books
methods: [GET]
defaults:

_controller: app.controller.book:indexAction
_sylius:

template: Author/books.html.twig
repository:

method: createPaginatorByAuthor
arguments: [$author]

criteria:
enabled: true
author.name: $author

paginate: false # Or: 50
limit: 100 # Or: false
serialization_groups: [Custom, Details]
serialization_version: 1.0.2

Creating Resources

To display a form, handle its submission or to create a new resource via API, you should use the createAction of your
app.controller.book service.

# app/config/routing.yml

app_book_create:
path: /books/new
methods: [GET, POST]
defaults:

_controller: app.controller.book:createAction

Done! Now when you go to /books/new, the ResourceController will use the factory (app.factory.book) to
create a new book instance. Then it will try to create an app_book form, and set the newly created book as its data.

9.1. Components & Bundles 629



Sylius

Submitting the Form

You can use exactly the same route to handle the submit of the form and create the book.

<form method="post" action="{{ path('app_book_create') }}">

On submit, the create action with method POST, will bind the request on the form, and if it is valid it will use the right
manager to persist the resource. Then, by default it redirects to app_book_show to display the created book, but
you can easily change that behavior - you’ll see this in further sections.

When validation fails, it will render the form just like previously with the error messages displayed.

Changing the Template

Just like for the show and index actions, you can customize the template per route.

# app/config/routing.yml

app_book_create:
path: /books/new
methods: [GET, POST]
defaults:

_controller: app.controller.book:createAction
_sylius:

template: Book/create.html.twig

Using Custom Form

You can also use custom form type on per route basis. Following Symfony3 conventions forms types are resolved by
FQCN. Below you can see the usage for specifying a custom form.

# app/config/routing.yml

app_book_create:
path: /books/new
methods: [GET, POST]
defaults:

_controller: app.controller.book:createAction
_sylius:

form: AppBundle\Form\BookType

Passing Custom Options to Form

What happens when you need pass some options to the form? Well, there’s a configuration for that!

Below you can see the usage for specifying custom options, in this case, validation_groups, but you can pass
any option accepted by the form.

# app/config/routing.yml

app_book_create:
path: /books/new
methods: [GET, POST]

(continues on next page)

630 Chapter 9. Components & Bundles

http://symfony.com/doc/current/forms.html#building-the-form


Sylius

(continued from previous page)

defaults:
_controller: app.controller.book:createAction
_sylius:

form:
type: app_book_custom
options:

validation_groups: [sylius, my_custom_group]

Using Custom Factory Method

By default, ResourceController will use the createNew method with no arguments to create a new instance
of your object. However, this behavior can be modified. To use a different method of your factory, you can simply
configure the factory option.

# app/config/routing.yml

app_book_create:
path: /books/new
methods: [GET, POST]
defaults:

_controller: app.controller.book:createAction
_sylius:

factory: createNewWithAuthor

Additionally, if you want to provide your custom method with arguments from the request, you can do so by adding
more parameters.

# app/config/routing.yml

app_book_create:
path: /books/{author}/new
methods: [GET, POST]
defaults:

_controller: app.controller.book:createAction
_sylius:

factory:
method: createNewWithAuthor
arguments: [$author]

With this configuration, $factory->createNewWithAuthor($request->get('author')) will be
called to create new resource within the createAction.

Custom Redirect After Success

By default the controller will try to get the id of the newly created resource and redirect to the “show” route. You can
easily change that behaviour. For example, to redirect to the index list after successfully creating a new resource - you
can use the following configuration.

# app/config/routing.yml

app_book_create:
path: /books/new
methods: [GET, POST]

(continues on next page)

9.1. Components & Bundles 631



Sylius

(continued from previous page)

defaults:
_controller: app.controller.book:createAction
_sylius:

redirect: app_book_index

You can also perform more complex redirects, with parameters. For example:

# app/config/routing.yml

app_book_create:
path: /genre/{genreId}/books/new
methods: [GET, POST]
defaults:

_controller: app.controller.book:createAction
_sylius:

redirect:
route: app_genre_show
parameters: { id: $genreId }

In addition to the request parameters, you can access some of the newly created objects properties, using the
resource. prefix.

# app/config/routing.yml

app_book_create:
path: /books/new
methods: [GET, POST]
defaults:

_controller: app.controller.book:createAction
_sylius:

redirect:
route: app_book_show
parameters: { title: resource.title }

With this configuration, the title parameter for route app_book_show will be obtained from your newly created
book.

Custom Event Name

By default, there are two events dispatched during resource creation, one before adding it do database, the other
after successful addition. The pattern is always the same - {applicationName}.{resourceName}.pre/
post_create. However, you can customize the last part of the event, to provide your own action name.

# app/config/routing.yml

app_book_customer_create:
path: /customer/books/new
methods: [GET, POST]
defaults:

_controller: app.controller.book:createAction
_sylius:

event: customer_create

This way, you can listen to app.book.pre_customer_create and app.book.post_customer_create
events. It’s especially useful, when you use ResourceController:createAction in more than one route.

632 Chapter 9. Components & Bundles



Sylius

Configuration Reference

# app/config/routing.yml

app_genre_book_add:
path: /{genreName}/books/add
methods: [GET, POST]
defaults:

_controller: app.controller.book:createAction
_sylius:

template: Book/addToGenre.html.twig
form: app_new_book
event: book_create
factory:

method: createForGenre
arguments: [$genreName]

criteria:
group.name: $genreName

redirect:
route: app_book_show
parameters: { title: resource.title }

Updating Resources

To display an edit form of a particular resource, change it or update it via API, you should use the updateAction
action of your app.controller.book service.

# app/config/routing.yml

app_book_update:
path: /books/{id}/edit
methods: [GET, PUT]
defaults:

_controller: app.controller.book:updateAction

Done! Now when you go to /books/5/edit, ResourceController will use the repository (app.repository.
book) to find the book with id == 5. If found it will create the app_book form, and set the existing book as data.

Submitting the Form

You can use exactly the same route to handle the submit of the form and updating the book.

<form method="post" action="{{ path('app_book_update', {'id': book.id}) }}">
<input type="hidden" name="_method" value="PUT" />

On submit, the update action with method PUT, will bind the request on the form, and if it is valid it will use the right
manager to persist the resource. Then, by default it redirects to app_book_show to display the updated book, but
like for creation of the resource - it’s customizable.

When validation fails, it will simply render the form again, but with error messages.

9.1. Components & Bundles 633



Sylius

Changing the Template

Just like for other actions, you can customize the template.

# app/config/routing.yml

app_book_update:
path: /books/{id}/edit
methods: [GET, PUT]
defaults:

_controller: app.controller.book:updateAction
_sylius:

template: Admin/Book/update.html.twig

Using Custom Form

Same way like for createAction you can override the default form.

# app/config/routing.yml

app_book_update:
path: /books/{id}/edit
methods: [GET, PUT]
defaults:

_controller: app.controller.book:updateAction
_sylius:

form: AppBundle\Form\BookType

Passing Custom Options to Form

Same way like for createAction you can pass options to the form.

Below you can see how to specify custom options, in this case, validation_groups, but you can pass any option
accepted by the form.

# app/config/routing.yml

app_book_update:
path: /books/{id}/edit
methods: [GET, PUT]
defaults:

_controller: app.controller.book:updateAction
_sylius:

form:
type: app_book_custom
options:

validation_groups: [sylius, my_custom_group]

Overriding the Criteria

By default, the updateAction will look for the resource by id. You can easily change that criteria.

634 Chapter 9. Components & Bundles



Sylius

# app/config/routing.yml

app_book_update:
path: /books/{title}/edit
methods: [GET, PUT]
defaults:

_controller: app.controller.book:updateAction
_sylius:

criteria: { title: $title }

Custom Redirect After Success

By default the controller will try to get the id of resource and redirect to the “show” route. To change that, use the
following configuration.

# app/config/routing.yml

app_book_update:
path: /books/{id}/edit
methods: [GET, PUT]
defaults:

_controller: app.controller.book:updateAction
_sylius:

redirect: app_book_index

You can also perform more complex redirects, with parameters. For example:

# app/config/routing.yml

app_book_update:
path: /genre/{genreId}/books/{id}/edit
methods: [GET, PUT]
defaults:

_controller: app.controller.book:updateAction
_sylius:

redirect:
route: app_genre_show
parameters: { id: $genreId }

Custom Event Name

By default, there are two events dispatched during resource update, one before setting new data, the other after success-
ful update. The pattern is always the same - {applicationName}.{resourceName}.pre/post_update.
However, you can customize the last part of the event, to provide your own action name.

# app/config/routing.yml

app_book_customer_update:
path: /customer/book-update/{id}
methods: [GET, PUT]
defaults:

_controller: app.controller.book:updateAction
_sylius:

event: customer_update

9.1. Components & Bundles 635



Sylius

This way, you can listen to app.book.pre_customer_update and app.book.post_customer_update
events. It’s especially useful, when you use ResourceController:updateAction in more than one route.

[API] Returning resource or no content

Depending on your app approach it can be useful to return a changed object or only the 204 HTTP Code, which
indicates that everything worked smoothly. Sylius, by default is returning the 204 HTTP Code, which indicates an
empty response. If you would like to receive a whole object as a response you should set a return_content option to
true.

# app/config/routing.yml

app_book_update:
path: /books/{title}/edit
methods: [GET, PUT]
defaults:

_controller: app.controller.book:updateAction
_sylius:

criteria: { title: $title }
return_content: true

Warning: The return_content flag is available for the applyStateMachineTransitionAction method as well. But
these are the only ones which can be configured this way. It is worth noticing, that the applyStateMachineTransi-
tionAction returns a default 200 HTTP Code response with a fully serialized object.

Configuration Reference

# app/config/routing.yml

app_book_update:
path: /genre/{genreId}/books/{title}/edit
methods: [GET, PUT, PATCH]
defaults:

_controller: app.controller.book:updateAction
_sylius:

template: Book/editInGenre.html.twig
form: app_book_custom
event: book_update
repository:

method: findBookByTitle
arguments: [$title, expr:service('app.context.book')]

criteria:
enabled: true
genreId: $genreId

redirect:
route: app_book_show
parameters: { title: resource.title }

return_content: true

636 Chapter 9. Components & Bundles



Sylius

Deleting Resources

Deleting a resource is simple.

# app/config/routing.yml

app_book_delete:
path: /books/{id}
methods: [DELETE]
defaults:

_controller: app.controller.book:deleteAction

Calling an Action with DELETE method

Currently browsers do not support the “DELETE” http method. Fortunately, Symfony has a very useful feature. You
can make a POST call with parameter override, which will force the framework to treat the request as the specified
method.

<form method="post" action="{{ path('app_book_delete', {'id': book.id}) }}">
<input type="hidden" name="_method" value="DELETE" />
<button type="submit">

Delete
</button>

</form>

On submit, the delete action with the method DELETE, will remove and flush the resource. Then, by default it redirects
to app_book_index to display the books index, but just like for the other actions - it’s customizable.

Overriding the Criteria

By default, the deleteAction will look for the resource by id. However, you can easily change that. For example, if
you want to delete a book that belongs to a particular genre, not only by its id.

# app/config/routing.yml

app_book_delete:
path: /genre/{genreId}/books/{id}
methods: [DELETE]
defaults:

_controller: app.controller.book:deleteAction
_sylius:

criteria:
id: $id
genre: $genreId

There are no magic hacks behind that, it simply takes parameters from request and builds the criteria array for the
findOneBy repository method.

Custom Redirect After Success

By default the controller will redirect to the “index” route after successful action. To change that, use the following
configuration.

9.1. Components & Bundles 637



Sylius

# app/config/routing.yml

app_book_delete:
path: /genre/{genreId}/books/{id}
methods: [DELETE]
defaults:

_controller: app.controller.book:deleteAction
_sylius:

redirect:
route: app_genre_show
parameters: { id: $genreId }

Custom Event Name

By default, there are two events dispatched during resource deletion, one before removing, the other after successful
removal. The pattern is always the same - {applicationName}.{resourceName}.pre/post_delete.
However, you can customize the last part of the event, to provide your own action name.

# app/config/routing.yml

app_book_customer_delete:
path: /customer/book-delete/{id}
methods: [DELETE]
defaults:

_controller: app.controller.book:deleteAction
_sylius:

event: customer_delete

This way, you can listen to app.book.pre_customer_delete and app.book.post_customer_delete
events. It’s especially useful, when you use ResourceController:deleteAction in more than one route.

Configuration Reference

# app/config/routing.yml

app_genre_book_remove:
path: /{genreName}/books/{id}/remove
methods: [DELETE]
defaults:

_controller: app.controller.book:deleteAction
_sylius:

event: book_delete
repository:

method: findByGenreNameAndId
arguments: [$genreName, $id]

criteria:
genre.name: $genreName
id: $id

redirect:
route: app_genre_show
parameters: { genreName: $genreName }

638 Chapter 9. Components & Bundles



Sylius

Configuration Reference

sylius_resource:
resources:

app.book:
driver: doctrine/orm
classes:

model: # Required!
interface: ~
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\ResourceBundle\Form\Type\DefaultResourceType

validation_groups: [sylius]
options:

object_manager: default
templates:

form: Book/_form.html.twig
translation:

classes:
model: ~
interface: ~
controller:

→˓Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\ResourceBundle\Form\Type\DefaultResourceType

validation_groups: [sylius]
templates:

form: Book/Translation/_form.html.twig
options: ~

Routing Generator Configuration Reference

app_book:
resource: |

alias: app.book
path: library
identifier: code
criteria:

code: $code
section: admin
templates: :Book
form: AppBundle/Form/Type/SimpleBookType
redirect: create
except: ['show']
only: ['create', 'index']
serialization_version: 1

type: sylius.resource

Learn more

• Resource Layer in the Sylius platform - concept documentation

9.1. Components & Bundles 639



Sylius

SyliusShippingBundle

SyliusShippingBundle is the shipment management component for Symfony e-commerce applications.

If you need to manage shipments, shipping methods and deal with complex cost calculation, this bundle can help you
a lot!

Your products or whatever you need to deliver, can be categorized under unlimited set of categories. You can display
appropriate shipping methods available to the user, based on object category, weight, dimensions and anything you
can imagine.

Flexible shipping cost calculation system allows you to create your own calculator services.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download package.

If you have Composer installed globally.

$ composer require sylius/shipping-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/shipping-bundle

Adding required bundles to the kernel

You need to enable the bundle inside the kernel.

If you’re not using any other Sylius bundles, you will also need to add SyliusResourceBundle and its dependencies.
Don’t worry, everything was automatically installed via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle(),
new FOS\RestBundle\FOSRestBundle(),
new JMS\SerializerBundle\JMSSerializerBundle($this),
new Stof\DoctrineExtensionsBundle\StofDoctrineExtensionsBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),
new Sylius\Bundle\ShippingBundle\SyliusShippingBundle(),
new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),

// Other bundles...
new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),

);
}

640 Chapter 9. Components & Bundles

http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

Container configuration

Put this configuration inside your app/config/config.yml.

sylius_shipping:
driver: doctrine/orm # Configure the Doctrine ORM driver used in documentation.

Configure doctrine extensions which are used by this bundle.

stof_doctrine_extensions:
orm:

default:
timestampable: true

Routing configuration

Add the following to your app/config/routing.yml.

sylius_shipping:
resource: "@SyliusShipping/Resources/config/routing.yml"

Updating database schema

Run the following command.

$ php bin/console doctrine:schema:update --force

Warning: This should be done only in dev environment! We recommend using Doctrine migrations, to safely
update your schema.

The ShippableInterface

In order to handle your merchandise through the Sylius shipping engine, your models need to implement ShippableIn-
terface.

Implementing the interface

Let’s assume that you have a Book entity in your application.

First step is to implement the simple interface, which contains few simple methods.

namespace Acme\Bundle\ShopBundle\Entity;

use Sylius\Component\Shipping\Model\ShippableInterface;
use Sylius\Component\Shipping\Model\ShippingCategoryInterface;

class Book implements ShippableInterface
{

private $shippingCategory;

(continues on next page)

9.1. Components & Bundles 641



Sylius

(continued from previous page)

public function getShippingCategory()
{

return $this->shippingCategory;
}

public function setShippingCategory(ShippingCategoryInterface $shippingCategory) /
→˓/ This method is not required.

{
$this->shippingCategory = $shippingCategory;

return $this;
}

public function getShippingWeight()
{

// return integer representing the object weight.
}

public function getShippingWidth()
{

// return integer representing the book width.
}

public function getShippingHeight()
{

// return integer representing the book height.
}

public function getShippingDepth()
{

// return integer representing the book depth.
}

}

Second and last task is to define the relation inside Resources/config/doctrine/Book.orm.xml of your
bundle.

<?xml version="1.0" encoding="UTF-8"?>

<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://doctrine-project.org/schemas/orm/

→˓doctrine-mapping
http://doctrine-project.org/schemas/orm/

→˓doctrine-mapping.xsd">

<entity name="Acme\ShopBundle\Entity\Book" table="acme_book">
<!-- your mappings... -->

<many-to-one field="shippingCategory" target-entity=
→˓"Sylius\Bundle\ShippingBundle\Model\ShippingCategoryInterface">

<join-column name="shipping_category_id" referenced-column-name="id"
→˓nullable="false" />

</many-to-one>
</entity>

(continues on next page)

642 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

</doctrine-mapping>

Done! Now your Book model can be used in Sylius shippingation engine.

Forms

If you want to add a shipping category selection field to your model form, simply use the
sylius_shipping_category_choice type.

namespace Acme\ShopBundle\Form\Type;

use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\Form\AbstractType;

class BookType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('title', 'text')
->add('shippingCategory', 'sylius_shipping_category_choice')

;
}

}

The ShippingSubjectInterface

The find available shipping methods or calculate shipping cost you need to use object implementing
ShippingSubjectInterface.

The default Shipment model is already implementing ShippingSubjectInterface.

Interface methods

• The getShippingMethod returns a ShippingMethodInterface instance, representing the method.

• The getShippingItemCount provides you with the count of items to ship.

• The getShippingItemTotal returns the total value of shipment, if applicable. The default Shipment
model returns 0.

• The getShippingWeight returns the total shipment weight.

• The getShippables returns a collection of unique ShippableInterface instances.

The Shipping Categories

Every shippable object needs to have a shipping category assigned. The ShippingCategory model is extremely simple
and described below.

9.1. Components & Bundles 643



Sylius

Attribute Description
id Unique id of the shipping category
name Name of the shipping category
description Human friendly description of the classification
createdAt Date when the category was created
updatedAt Date of the last shipping category update

The Shipping Method

ShippingMethod model represents the way that goods need to be shipped. An example of shipping method may be
“DHL Express” or “FedEx World Shipping”.

Attribute Description
id Unique id of the shipping method
name Name of the shipping method
category Reference to ShippingCategory (optional)
categoryRequirement Category requirement
calculator Name of the cost calculator
configuration Configuration for the calculator
createdAt Date when the method was created
updatedAt Date of the last shipping method update

Calculating shipping cost

Calculating shipping cost is as simple as using the sylius.shipping_calculator service and calling
calculate method on ShippingSubjectInterface.

Let’s calculate the cost of existing shipment.

public function myAction()
{

$calculator = $this->get('sylius.shipping_calculator');
$shipment = $this->get('sylius.repository.shipment')->find(5);

echo $calculator->calculate($shipment); // Returns price in cents. (integer)
}

What has happened?

• The delegating calculator gets the ShippingMethod from the ShippingSubjectInterface (Shipment).

• Appropriate Calculator instance is loaded, based on the ShippingMethod.calculator parameter.

• The calculate(ShippingSubjectInterface, array $configuration) is called, where con-
figuration is taken from ShippingMethod.configuration attribute.

Default calculators

Default calculators can be sufficient solution for many use cases.

644 Chapter 9. Components & Bundles



Sylius

Flat rate

The flat_rate calculator, charges concrete amount per shipment.

Per item rate

The per_item_rate calculator, charges concrete amount per shipment item.

More calculators

Depending on community contributions and Sylius resources, more default calculators can be implemented, for exam-
ple weight_range_rate.

Custom calculators

Sylius ships with several default calculators, but you can easily register your own.

Simple calculators

All shipping cost calculators implement CalculatorInterface. In our example we’ll create a calculator which
calls an external API to obtain the shipping cost.

# src/AppBundle/Shipping/Calculator/DHLCalculator.php
<?php

declare(strict_types=1);

namespace AppBundle\Shipping\Calculator;

use Sylius\Component\Shipping\Calculator\CalculatorInterface;
use Sylius\Component\Shipping\Model\ShipmentInterface;

final class DHLCalculator implements CalculatorInterface
{

/**
* @var DHLService

*/
private $dhlService;

/**
* @param DHLService $dhlService

*/
public function __construct(DHLService $dhlService)
{

$this->dhlService = $dhlService;
}

/**
* {@inheritdoc}

*/
public function calculate(ShipmentInterface $subject, array $configuration): int

(continues on next page)

9.1. Components & Bundles 645



Sylius

(continued from previous page)

{
return $this->dhlService->getShippingCostForWeight($subject->

→˓getShippingWeight());
}

/**
* {@inheritdoc}

*/
public function getType(): string
{

return 'dhl';
}

}

Now, you need to register your new service in container and tag it with sylius.shipping_calculator.

services:
app.shipping_calculator.dhl:

class: AppBundle\Shipping\Calculator\DHLCalculator
arguments: ['@app.dhl_service']
tags:

- { name: sylius.shipping_calculator, calculator: dhl, label: "DHL" }

That would be all. This new option (“DHL”) will appear on the ShippingMethod creation form, in the “calculator”
field.

Configurable calculators

You can also create configurable calculators, meaning that you can have several ShippingMethod’s using same type
of calculator, with different settings.

Let’s modify the DHLCalculator, so that it charges 0 if shipping more than X items. First step is to create a form type
which will be displayed if our calculator is selected.

# src/AppBundle/Form/Type/Shipping/Calculator/DHLConfigurationType.php
<?php

declare(strict_types=1);

namespace AppBundle\Form\Type\Shipping\Calculator;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\Extension\Core\Type\IntegerType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolver;
use Symfony\Component\Validator\Constraints\NotBlank;
use Symfony\Component\Validator\Constraints\Type;

final class DHLConfigurationType extends AbstractType
{

/**
* {@inheritdoc}

*/
public function buildForm(FormBuilderInterface $builder, array $options): void
{

(continues on next page)

646 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

$builder
->add('limit', IntegerType::class, [

'label' => 'Free shipping above total items',
'constraints' => [

new NotBlank(),
new Type(['type' => 'integer']),

]
])

;
}

/**
* {@inheritdoc}

*/
public function configureOptions(OptionsResolver $resolver): void
{

$resolver
->setDefaults([

'data_class' => null,
'limit' => 10,

])
->setAllowedTypes('limit', 'integer')

;
}

/**
* {@inheritdoc}

*/
public function getBlockPrefix(): string
{

return 'app_shipping_calculator_dhl';
}

}

We also need to register the form type in the container and set this form type in the definition of the calculator.

services:
app.shipping_calculator.dhl:

class: AppBundle\Shipping\Calculator\DHLCalculator
arguments: ['@app.dhl_service']
tags:

- { name: sylius.shipping_calculator, calculator: dhl, form_type:
→˓AppBundle\Form\Type\Shipping\Calculator\DHLConfigurationType, label: "DHL" }

app.form.type.shipping_calculator.dhl:
class: AppBundle\Form\Type\Shipping\Calculator\DHLConfigurationType
tags:

- { name: form.type }

Perfect, now we’re able to use the configuration inside the calculate method.

# src/AppBundle/Shipping/Calculator/DHLCalculator.php
<?php

declare(strict_types=1);

namespace AppBundle\Shipping\Calculator;
(continues on next page)

9.1. Components & Bundles 647



Sylius

(continued from previous page)

use Sylius\Component\Shipping\Calculator\CalculatorInterface;
use Sylius\Component\Shipping\Model\ShipmentInterface;

final class DHLCalculator implements CalculatorInterface
{

/**
* @var DHLService

*/
private $dhlService;

/**
* @param DHLService $dhlService

*/
public function __construct(DHLService $dhlService)
{

$this->dhlService = $dhlService;
}

/**
* {@inheritdoc}

*/
public function calculate(ShipmentInterface $subject, array $configuration): int
{

if ($subject->getShippingUnitCount() > $configuration['limit']) {
return 0;

}

return $this->dhlService->getShippingCostForWeight($subject->
→˓getShippingWeight());

}

/**
* {@inheritdoc}

*/
public function getType(): string
{

return 'dhl';
}

}

Your new configurable calculator is ready to use. When you select the “DHL” calculator in ShippingMethod form,
configuration fields will appear automatically.

Resolving available shipping methods

In many use cases, you want to decide which shipping methods are available for user. Sylius has a dedicated service
which serves this purpose.

ShippingMethodsResolver

This service also works with the ShippingSubjectInterface. To get all shipping methods which support given
subject, simply call the getSupportedMethods function.

648 Chapter 9. Components & Bundles



Sylius

public function myAction()
{

$resolver = $this->get('sylius.shipping_methods_resolver');
$shipment = $this->get('sylius.repository.shipment')->find(5);

foreach ($resolver->getSupportedMethods($shipment) as $method) {
echo $method->getName();

}
}

You can also pass the criteria array to initially filter the shipping methods pool.

public function myAction()
{

$country = $this->getUser()->getCountry();
$resolver = $this->get('sylius.shipping_methods_resolver');
$shipment = $this->get('sylius.repository.shipment')->find(5);

foreach ($resolver->getSupportedMethods($shipment, array('country' => $country))
→˓as $method) {

echo $method->getName();
}

}

In forms

To display a select field with all the available methods for given subject, you can use the
sylius_shipping_method_choice type. It supports two special options, required subject and op-
tional criteria.

<?php

class ShippingController extends Controller
{

public function selectMethodAction(Request $request)
{

$shipment = $this->get('sylius.repository.shipment')->find(5);

$form = $this->get('form.factory')->create(ShippingMethodChoiceType::class,
→˓null, array('subject' => $shipment));

}
}

This form type internally calls the ShippingMethodsResolver service and creates a list of available methods.

Shipping method requirements

Sylius has a very flexible system for displaying only the right shipping methods to the user.

Shipping categories

Every ShippableInterface can hold a reference to ShippingCategory. The ShippingSubjectInterface (or Ship-
mentInterface) returns a collection of shippables.

9.1. Components & Bundles 649



Sylius

ShippingMethod has an optional shipping category setting as well as categoryRequirement which has 3 options. If
this setting is set to null, categories system is ignored.

“Match any” requirement

With this requirement, the shipping method will support any shipment (or shipping subject) which contains at least
one shippable with the same category.

“Match all” requirement

All shippables have to reference the same category as the ShippingMethod.

“Match none” requirement

None of the shippables can have the same shipping category.

Summary

Configuration Reference

sylius_shipping:
# The driver used for persistence layer.
driver: ~
classes:

shipment:
classes:

model: Sylius\Component\Shipping\Model\Shipment
interface: Sylius\Component\Shipping\Model\ShipmentInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\ShippingBundle\Form\Type\ShipmentType

shipment_item:
classes:

model: Sylius\Component\Shipping\Model\ShipmentItem
interface: Sylius\Component\Shipping\Model\ShipmentItemInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\ShippingBundle\Form\Type\ShipmentItemType

shipping_method:
classes:

model: Sylius\Component\Shipping\Model\ShippingMethod
interface:

→˓Sylius\Component\Shipping\Model\ShippingMethodInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\ShippingBundle\Form\Type\ShippingMethodType

translation:
classes:

(continues on next page)

650 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

model:
→˓Sylius\Component\Shipping\Model\ShippingMethodTranslation

interface:
→˓Sylius\Component\Shipping\Model\ShippingMethodTranslationInterface

controller:
→˓Sylius\Bundle\ResourceBundle\Controller\ResourceController

repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form:

→˓Sylius\Bundle\ShippingBundle\Form\Type\ShippingMethodTranslationType
shipping_category:

classes:
model: Sylius\Component\Shipping\Model\ShippingCategory
interface: Sylius\Component\Shipping\Model\ShippingCategoryInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\ShippingBundle\Form\Type\ShippingCategoryType

Tests

$ composer install
$ bin/phpspec run -fpretty --verbose

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

Learn more

• Shipments in the Sylius platform - concept documentation

SyliusTaxationBundle

Calculating and applying taxes is a common task for most of ecommerce applications. SyliusTaxationBundle is
a reusable taxation component for Symfony. You can integrate it into your existing application and enable the tax
calculation logic for any model implementing the TaxableInterface.

It supports different tax categories and customizable tax calculators - you’re able to easily implement your own calcu-
lator services. The default implementation handles tax included in and excluded from the price.

As with any Sylius bundle, you can override all the models, controllers, repositories, forms and services.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download package.

If you have Composer installed globally.

9.1. Components & Bundles 651

https://github.com/Sylius/Sylius/issues
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

$ composer require sylius/taxation-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/taxation-bundle

Adding required bundles to the kernel

First, you need to enable the bundle inside the kernel.

If you’re not using any other Sylius bundles, you will also need to add SyliusResourceBundle and its dependencies to
kernel. Don’t worry, everything was automatically installed via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle(),
new FOS\RestBundle\FOSRestBundle(),
new JMS\SerializerBundle\JMSSerializerBundle($this),
new Stof\DoctrineExtensionsBundle\StofDoctrineExtensionsBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),
new Sylius\Bundle\TaxationBundle\SyliusTaxationBundle(),
new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),

// Other bundles...
new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),

);
}

Container configuration

Put this configuration inside your app/config/config.yml.

sylius_taxation:
driver: doctrine/orm # Configure the Doctrine ORM driver used in documentation.

And configure doctrine extensions which are used by this bundle:

stof_doctrine_extensions:
orm:

default:
timestampable: true

Routing configuration

Add the following to your app/config/routing.yml.

652 Chapter 9. Components & Bundles



Sylius

sylius_taxation:
resource: "@SyliusTaxationBundle/Resources/config/routing.yml"

Updating database schema

Run the following command.

$ php bin/console doctrine:schema:update --force

Warning: This should be done only in dev environment! We recommend using Doctrine migrations, to safely
update your schema.

The TaxableInterface

In order to calculate the taxes for a model in your application, it needs to implement the TaxableInterface It is a
very simple interface, with only one method - the getTaxCategory(), as every taxable has to belong to a specific
tax category.

Implementing the interface

Let’s assume that you have a Server entity in your application. Every server has it’s price and other parameters, but
you would like to calculate the tax included in price. You could calculate the math in a simple method, but it’s not
enough when you have to handle multiple tax rates, categories and zones.

First step is to implement the simple interface.

namespace AcmeBundle\Entity;

use Sylius\Component\Taxation\Model\TaxCategoryInterface;
use Sylius\Component\Taxation\Model\TaxableInterface;

class Server implements TaxableInterface
{

private $name;
private $taxCategory;

public function getName()
{

return $this->name;
}

public function setName($name)
{

$this->name = $name;
}

public function getTaxCategory()
{

return $this->taxCategory;
}

(continues on next page)

9.1. Components & Bundles 653



Sylius

(continued from previous page)

public function setTaxCategory(TaxCategoryInterface $taxCategory) // This method
→˓is not required.

{
$this->taxCategory = $taxCategory;

}
}

Second and last task is to define the relation inside Resources/config/doctrine/Server.orm.xml of
your bundle.

<?xml version="1.0" encoding="UTF-8"?>

<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://doctrine-project.org/schemas/orm/

→˓doctrine-mapping
http://doctrine-project.org/schemas/orm/

→˓doctrine-mapping.xsd">

<entity name="AcmeBundle\Entity\Server" table="acme_server">
<!-- your mappings... -->

<many-to-one field="taxCategory" target-entity=
→˓"Sylius\Component\Taxation\Model\TaxCategoryInterface">

<join-column name="tax_category_id" referenced-column-name="id" nullable=
→˓"false" />

</many-to-one>
</entity>

</doctrine-mapping>

Done! Now your Server model can be used in Sylius taxation engine.

Forms

If you want to add a tax category selection field to your model form, simply use the
sylius_tax_category_choice type.

namespace AcmeBundle\Form\Type;

use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\Form\AbstractType;

class ServerType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder
->add('name', 'text')
->add('taxCategory', 'sylius_tax_category_choice')

;
}

public function getName()

(continues on next page)

654 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

{
return 'acme_server';

}
}

Configuring taxation

To start calculating taxes, we need to configure the system. In most cases, the configuration process is done via web
interface, but you can also do it programatically.

Creating the tax categories

First step is to create a new tax category.

<?php

public function configureAction()
{

$taxCategoryFactory = $this->container->get('sylius.factory.tax_category');
$taxCategoryManager = $this->container->get('sylius.manager.tax_category');

$clothingTaxCategory = $taxCategoryFactory->createNew();
$clothingTaxCategory->setName('Clothing');
$clothingTaxCategory->setDescription('T-Shirts and this kind of stuff.');

$foodTaxCategory = $taxCategoryFactory->createNew();
$foodTaxCategory->setName('Food');
$foodTaxCategory->setDescription('Yummy!');

$taxCategoryManager->persist($clothingTaxCategory);
$taxCategoryManager->persist($foodTaxCategory);

$taxCategoryManager->flush();
}

Categorizing the taxables

Second thing to do is to classify the taxables, in our example we’ll get two products and assign the proper categories
to them.

<?php

public function configureAction()
{

$tshirtProduct = // ...
$bananaProduct = // ... Some logic behind loading entities.

$taxCategoryRepository = $this->container->get('sylius.repository.tax_category');

$clothingTaxCategory = $taxCategoryRepository->findOneBy(['name' => 'Clothing']);
$foodTaxCategory = $taxCategoryRepository->findOneBy(['name' => 'Food']);

(continues on next page)

9.1. Components & Bundles 655



Sylius

(continued from previous page)

$tshirtProduct->setTaxCategory($clothingTaxCategory);
$bananaProduct->setTaxCategory($foodTaxCategory);

// Save the product entities.
}

Configuring the tax rates

Finally, you have to create appropriate tax rates for each of categories.

<?php

public function configureAction()
{

$taxCategoryRepository = $this->container->get('sylius.repository.tax_category');

$clothingTaxCategory = $taxCategoryRepository->findOneBy(['name' => 'Clothing']);
$foodTaxCategory = $taxCategoryRepository->findOneBy(['name' => 'Food']);

$taxRateFactory = $this->container->get('sylius.factory.tax_rate');
$taxRateManager = $this->container->get('sylius.repository.tax_rate');

$clothingTaxRate = $taxRateFactory->createNew();
$clothingTaxRate->setCategory($clothingTaxCategory);
$clothingTaxRate->setName('Clothing Tax');
$clothingTaxRate->setAmount(0.08);

$foodTaxRate = $taxRateFactory->createNew();
$foodTaxRate->setCategory($foodTaxCategory);
$foodTaxRate->setName('Food');
$foodTaxRate->setAmount(0.12);

$taxRateManager->persist($clothingTaxRate);
$taxRateManager->persist($foodTaxRate);

$taxRateManager->flush();
}

Done! See the “Calculating Taxes” chapter to see how to apply these rates.

Calculating taxes

Warning: When using the CoreBundle (i.e: full stack Sylius framework), the taxes are already calculated at each
cart change. It is implemented by the TaxationProcessor class, which is called by the OrderTaxationLis-
tener‘.

In order to calculate tax amount for given taxable, we need to find out the applicable tax rate. The tax rate resolver
service is available under sylius.tax_rate_resolver id, while the delegating tax calculator is accessible via
sylius.tax_calculator name.

656 Chapter 9. Components & Bundles



Sylius

Resolving rate and using calculator

<?php

namespace Acme\ShopBundle\Taxation

use Acme\ShopBundle\Entity\Order;
use Sylius\Bundle\TaxationBundle\Calculator\CalculatorInterface;
use Sylius\Bundle\TaxationBundle\Resolver\TaxRateResolverInterface;

class TaxApplicator
{

private $calculator;
private $taxRateResolver;

public function __construct(
CalculatorInterface $calculator,
TaxRateResolverInterface $taxRateResolver,

)
{

$this->calculator = $calculator;
$this->taxRateResolver = $taxRateResolver;

}

public function applyTaxes(Order $order)
{

$tax = 0;

foreach ($order->getItems() as $item) {
$taxable = $item->getProduct();
$rate = $this->taxRateResolver->resolve($taxable);

if (null === $rate) {
continue; // Skip this item, there is no matching tax rate.

}

$tax += $this->calculator->calculate($item->getTotal(), $rate);
}

$order->setTaxTotal($tax); // Set the calculated taxes.
}

}

Using custom tax calculators

Every TaxRate model holds a calculator variable with the name of the tax calculation service, used to compute
the tax amount. While the default calculator should fit for most common use cases, you’re free to define your own
implementation.

Creating the calculator

All tax calculators implement the CalculatorInterface. In our example we’ll create a simple fee calculator.
First, you need to create a new class.

9.1. Components & Bundles 657



Sylius

# src/AppBundle/Taxation/Calculator/FeeCalculator.php
<?php

declare(strict_types=1);

namespace AppBundle\Taxation\Calculator;

use Sylius\Component\Taxation\Calculator\CalculatorInterface;
use Sylius\Component\Taxation\Model\TaxRateInterface;

final class FeeCalculator implements CalculatorInterface
{

/**
* {@inheritdoc}

*/
public function calculate(float $base, TaxRateInterface $rate): float
{

return $base * ($rate->getAmount() + 0.15 * 0.30);
}

}

Now, you need to register your new service in container and tag it with sylius.tax_calculator.

services:
app.tax_calculator.fee:

class: AppBundle\Taxation\Calculator\FeeCalculator
tags:

- { name: sylius.tax_calculator, calculator: fee, label: "Fee" }

That would be all. This new option (“Fee”) will appear on the TaxRate creation form, in the “calculator” field.

Summary

Configuration Reference

sylius_taxation:
# The driver used for persistence layer.
driver: ~
resources:

tax_category:
classes:

model: Sylius\Component\Taxation\Model\TaxCategory
interface: Sylius\Component\Taxation\Model\TaxCategoryInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\TaxationBundle\Form\Type\TaxCategoryType

tax_rate:
classes:

model: Sylius\Component\Taxation\Model\TaxRate
interface: Sylius\Component\Taxation\Model\TaxRateInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\TaxationBundle\Form\Type\TaxRateType

658 Chapter 9. Components & Bundles



Sylius

Tests

$ composer install
$ bin/phpspec run -fpretty --verbose

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

Learn more

• Taxation in the Sylius platform - concept documentation

SyliusTaxonomyBundle

Flexible categorization system for Symfony applications.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download the package.

If you have Composer installed globally.

$ composer require sylius/taxonomy-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/taxonomy-bundle

Note: This version is compatible only with Symfony 2.3 or newer. Please see the CHANGELOG file in the repository,
to find version to use with older vendors.

Adding required bundles to the kernel

First, you need to enable the bundle inside the kernel. If you’re not using any other Sylius bundles, you will also need
to add SyliusResourceBundle and its dependencies to the kernel. Don’t worry, everything was automatically installed
via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
(continues on next page)

9.1. Components & Bundles 659

https://github.com/Sylius/Sylius/issues
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

(continued from previous page)

new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle(),
new FOS\RestBundle\FOSRestBundle(),
new JMS\SerializerBundle\JMSSerializerBundle($this),
new Stof\DoctrineExtensionsBundle\StofDoctrineExtensionsBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),
new Sylius\Bundle\TaxonomyBundle\SyliusTaxonomyBundle(),
new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),

// Other bundles...
new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),

);
}

Container configuration

Configure doctrine extensions which are used in the taxonomy bundle:

stof_doctrine_extensions:
orm:

default:
tree: true
sluggable: true

Updating database schema

Run the following command.

$ php bin/console doctrine:schema:update --force

Warning: This should be done only in dev environment! We recommend using Doctrine migrations, to safely
update your schema.

Taxons

Taxons

Retrieving taxons from database should always happen via repository, which implements
Sylius\Bundle\ResourceBundle\Model\RepositoryInterface. If you are using Doctrine,
you’re already familiar with this concept, as it extends the native Doctrine ObjectRepository interface.

Your taxon repository is always accessible via sylius.repository.taxon service.

Taxon contains methods which allow you to retrieve the child taxons. Let’s look at our example tree.

| Categories
|-- T-Shirts
| |-- Men
| `-- Women
|-- Stickers

(continues on next page)

660 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

|-- Mugs
`-- Books

To get a collection of child taxons under taxon, use the findChildren method.

<?php

public function myAction(Request $request)
{

// Find the parent taxon
$taxonRepository = $this->container->get('sylius.repository.taxon');
$taxon = $taxonRepository->findOneByName('Categories');

$taxonRepository = $this->container->get('sylius.repository.taxon');
$taxons = $taxonRepository->findChildren($taxon);

}

$taxons variable will now contain a list (ArrayCollection) of taxons in following order: T-Shirts, Men, Women,
Stickers, Mugs, Books.

Categorization

In this example, we will use taxonomies to categorize products and build a nice catalog.

We think that keeping the app-specific bundle structure simple is a good practice, so let’s assume you have your
ShopBundle registered under Acme\ShopBundle namespace.

<?php

// src/Acme/ShopBundle/Entity/Product.php
namespace Acme\ShopBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\Common\Collections\Collection;

class Product
{

protected $taxons;

public function __construct()
{

$this->taxons = new ArrayCollection();
}

public function getTaxons()
{

return $this->taxons;
}

public function setTaxons(Collection $taxons)
{

$this->taxons = $taxons;
}

}

9.1. Components & Bundles 661



Sylius

You also need to define the doctrine mapping with a many-to-many relation between Product and Taxons. Your product
entity mapping should live inside Resources/config/doctrine/Product.orm.xml of your bundle.

<?xml version="1.0" encoding="UTF-8"?>

<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://doctrine-project.org/schemas/orm/

→˓doctrine-mapping
http://doctrine-project.org/schemas/orm/

→˓doctrine-mapping.xsd">

<entity name="Acme\ShopBundle\Entity\Product" table="sylius_product">
<id name="id" column="id" type="integer">

<generator strategy="AUTO" />
</id>

<!-- Your other mappings. -->

<many-to-many field="taxons" target-entity=
→˓"Sylius\Component\Taxonomy\Model\TaxonInterface">

<join-table name="sylius_product_taxon">
<join-columns>

<join-column name="product_id" referenced-column-name="id"
→˓nullable="false" />

</join-columns>
<inverse-join-columns>

<join-column name="taxon_id" referenced-column-name="id" nullable=
→˓"false" />

</inverse-join-columns>
</join-table>

</many-to-many>
</entity>

</doctrine-mapping>

Product is just an example where we have many to many relationship with taxons, which will make it possible to
categorize products and list them by taxon later.

You can classify any other model in your application the same way.

Creating your forms

To be able to apply taxonomies on your products, or whatever you are categorizing or tagging, it is handy to use
sylius_taxon_choice form type:

<?php

// src/Acme/ShopBundle/Form/ProductType.php
namespace Acme\ShopBundle\Form;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolver;

class ProductType extends AbstractType
{

(continues on next page)

662 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('taxons', 'sylius_taxon_choice');
}

public function configureOptions(OptionsResolver $resolver)
{

$resolver
->setDefaults(array(

'data_class' => 'Acme\ShopBundle\Entity\Product'
))

;
}

}

This sylius_taxon_choice type will add a select input field for each taxonomy, with select option for each taxon.

Summary

Configuration Reference

sylius_taxonomy:
# The driver used for persistence layer.
driver: ~
resources:

taxon:
classes:

model: Sylius\Component\Taxonomy\Model\Taxon
interface: Sylius\Component\Taxonomy\Model\TaxonInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\TranslatableFactory
form: Sylius\Bundle\TaxonomyBundle\Form\Type\TaxonType

translation:
classes:

model: Sylius\Component\Taxonomy\Model\TaxonTranslation
interface:

→˓Sylius\Component\Taxonomy\Model\TaxonTranslationInterface
controller:

→˓Sylius\Bundle\ResourceBundle\Controller\ResourceController
repository: ~
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\TaxonomyBundle\Form\Type\TaxonTranslationType

Tests

$ composer install
$ bin/phpspec run -fpretty --verbose

9.1. Components & Bundles 663



Sylius

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

Learn more

• Taxons in the Sylius platform - concept documentation

SyliusThemeBundle

Flexible theming system for Symfony applications.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download the package.

If you have Composer installed globally.

$ composer require sylius/theme-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/theme-bundle

Adding required bundles to the kernel

You need to enable the bundle inside the kernel, usually at the end of bundle list.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
new Symfony\Bundle\TwigBundle\TwigBundle(),

// Other bundles...
new Sylius\Bundle\ThemeBundle\SyliusThemeBundle(),

);
}

Note: Please register the bundle after FrameworkBundle. This is important as we override default templating,
translation and assets logic.

664 Chapter 9. Components & Bundles

https://github.com/Sylius/Sylius/issues
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

Configuring bundle

In order to store your themes metadata in the filesystem, add the following configuration:

sylius_theme:
sources:

filesystem: ~

Your first theme

This tutorial assumes that the filesystem source. Make sure it’s enabled with the default options:

sylius_theme:
sources:

filesystem: ~

Themes location and definition

Private themes should be added to app/themes directory by default. Every theme should have a default configu-
ration located in composer.json file. The only required parameter is name, but it is worth to define other ones
(have a look at theme configuration reference).

{
"name": "vendor/default-theme"

}

When adding or removing a theme, it’s necessary to rebuild the container (same as adding new translation files in
Symfony) by clearing the cache (bin/console cache:clear).

Theme structure

Themes can override and add both bundle resources and app resources. When your theme configu-
ration is in SampleTheme/theme.json, app resources should be located at SampleTheme/views
for templates, SampleTheme/translations for translations and SampleTheme/public for as-
sets. Same comes with the bundle resources, eg. for FOSUserBundle the paths should be lo-
cated at SampleTheme/FOSUserBundle/views, SampleTheme/FOSUserBundle/translations and
SampleTheme/FOSUserBundle/public respectively.

AcmeTheme
AcmeBundle

public
asset.jpg

translations
messages.en.yml

views
template.html.twig

composer.json
translations

messages.en.yml
views

template.html.twig

9.1. Components & Bundles 665



Sylius

Enabling themes

Themes are enabled on the runtime and uses the theme context to define which one is currently used. There are two
ways to enable your theme:

Custom theme context

Implement Sylius\Bundle\ThemeBundle\Context\ThemeContextInterface, register it as a service
and replace the default theme context with the new one by changing ThemeBundle configuration:

sylius_theme:
context: acme.theme_context # theme context service id

Request listener and settable theme context

Create an event listener and register it as listening for kernel.request event.

use Sylius\Bundle\ThemeBundle\Context\SettableThemeContext;
use Sylius\Bundle\ThemeBundle\Repository\ThemeRepositoryInterface;
use Symfony\Component\HttpKernel\Event\GetResponseEvent;
use Symfony\Component\HttpKernel\HttpKernelInterface;

final class ThemeRequestListener
{

/**
* @var ThemeRepositoryInterface

*/
private $themeRepository;

/**
* @var SettableThemeContext

*/
private $themeContext;

/**
* @param ThemeRepositoryInterface $themeRepository

* @param SettableThemeContext $themeContext

*/
public function __construct(ThemeRepositoryInterface $themeRepository,

→˓SettableThemeContext $themeContext)
{

$this->themeRepository = $themeRepository;
$this->themeContext = $themeContext;

}

/**
* @param GetResponseEvent $event

*/
public function onKernelRequest(GetResponseEvent $event)
{

if (HttpKernelInterface::MASTER_REQUEST !== $event->getRequestType()) {
// don't do anything if it's not the master request
return;

}

(continues on next page)

666 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

$this->themeContext->setTheme(
$this->themeRepository->findOneByName('sylius/cool-theme')

);
}

}

Theme assets

When creating a new theme, any templates not in your own theme are taken from the default SyliusShopBundle views
- otherwise you’d need to copy all the files. But watch out! Assets like javascript resources are not loaded this way. If
you install some assets you will need to link them to your theme files by using this command:

$ php bin/console sylius:theme:assets:install

Important changes

SyliusThemeBundle changes the way vanilla Symfony works a lot. Templates and translations will never behave
the same as they were.

Templates

Changed loading order (priority descending):

• App templates:

– <Theme>/views (NEW!)

– app/Resources/views

• Bundle templates:

– <Theme>/<Bundle name>/views (NEW!)

– app/Resources/<Bundle name>/views

– <Bundle>/Resources/views

Translations

Changed loading order (priority descending):

• <Theme>/translations (NEW!)

• <Theme>/<Bundle name>/translations (NEW!)

• app/Resources/translations

• app/Resources/<Bundle name>/translations

• <Bundle>/Resources/translations

9.1. Components & Bundles 667



Sylius

Assets

Theme assets are installed by sylius:theme:assets:install command, which is supplementary for and
should be used after assets:install.

The command run with --symlink or --relative parameters creates symlinks for every installed asset file, not
for entire asset directory (eg. if AcmeBundle/Resources/public/asset.js exists, it creates symlink web/
bundles/acme/asset.js leading to AcmeBundle/Resources/public/asset.js instead of symlink
web/bundles/acme/ leading to AcmeBundle/Resources/public/). When you create a new asset or
delete an existing one, it is required to rerun this command to apply changes (just as the hard copy option works).

Assetic

Nothing has changed, ThemeBundle is not and will not be integrated with Assetic.

Configuration sources

To discover themes that are defined in the application, ThemeBundle uses configuration sources.

Existing configuration sources

Filesystem configuration source

Filesystem configuration source loads theme definitions from files placed under specified directories.

By default it seeks for composer.json files that exists under %kernel.root_dir%/themes directory, which
usually is resolved to app/themes.

Configuration reference

sylius_theme:
sources:

filesystem:
enabled: false
filename: composer.json
scan_depth: null
directories:

- "%kernel.root_dir%/themes"

Note: Like every other source, filesystem is disabled if not specified otherwise. To enable it and use the default
configuration, use the following configuration:

sylius_theme:
sources:

filesystem: ~

Tip: Scanning for the configuration file inside themes directories is recursive with unlimited directory depth by
default, which can result in slow performance when a lot of files are placed inside themes (e.g. a node_modules folder).

668 Chapter 9. Components & Bundles



Sylius

Define the optional scan_depth (integer) setting to the configuration to restrict scanning for the theme configuration
file to a specific depth.

Test configuration source

Test configuration source provides an interface that can be used to add, remove and access themes in test environment.
They are stored in the cache directory and if used with Behat, they are persisted across steps but not across scenarios.

Configuration reference

This source does not have any configuration options. To enable it, use the following configuration:

sylius_theme:
sources:

test: ~

Usage

In order to use tests, have a look at sylius.theme.test_theme_configuration_manager service (im-
plementing TestThemeConfigurationManagerInterface). You can:

• add a theme: void add(array $configuration)

• remove a theme: void remove(string $themeName)

• remove all themes: void clear()

Creating custom configuration source

If there is no existing configuration source that fulfills your needs, you can also create a new one.

Creating custom configuration source

If your needs can’t be fulfilled by built-in configuration sources, you can create a custom one in a few minutes!

Configuration provider

The configuration provider contains the core logic of themes configurations retrieval.

It requires only one method - getConfigurations() which receives no arguments and returns an array of con-
figuration arrays.

use Sylius\Bundle\ThemeBundle\Configuration\ConfigurationProviderInterface;

final class CustomConfigurationProvider implements ConfigurationProviderInterface
{

/**
* {@inheritdoc}

*/

(continues on next page)

9.1. Components & Bundles 669

http://api.sylius.com/Sylius/Bundle/ThemeBundle/Configuration/Test/TestThemeConfigurationManagerInterface.html


Sylius

(continued from previous page)

public function getConfigurations()
{

return [
[

'name' => 'theme/name',
'path' => '/theme/path',
'title' => 'Theme title',

],
];

}
}

Configuration source factory

The configuration source factory is the glue between your brand new configuration provider and ThemeBundle.

It provides an easy way to allow customization of your configuration source and defines how the configuration provider
is constructed.

use Sylius\Bundle\ThemeBundle\Configuration\ConfigurationSourceFactoryInterface;
use Symfony\Component\Config\Definition\Builder\ArrayNodeDefinition;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Definition;

final class CustomConfigurationSourceFactory implements
→˓ConfigurationSourceFactoryInterface
{

/**
* {@inheritdoc}

*/
public function buildConfiguration(ArrayNodeDefinition $node)
{

$node
->children()

->scalarNode('option')
;

}

/**
* {@inheritdoc}

*/
public function initializeSource(ContainerBuilder $container, array $config)
{

return new Definition(CustomConfigurationProvider::class, [
$config['option'], // pass an argument configured by end user to

→˓configuration provider
]);

}

/**
* {@inheritdoc}

*/
public function getName()
{

return 'custom';

(continues on next page)

670 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

}
}

Note: Try not to define any public services in the container inside initializeSource() - it will prevent Symfony
from cleaning it up and will remain in the compiled container even if not used.

The last step is to tell ThemeBundle to use the source factory defined before. It can be done in your bundle definition:

use Sylius\Bundle\ThemeBundle\DependencyInjection\SyliusThemeExtension;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\HttpKernel\Bundle\Bundle;

final class AcmeBundle extends Bundle
{

/**
* {@inheritdoc}

*/
public function build(ContainerBuilder $container)
{

/** @var SyliusThemeExtension $themeExtension */
$themeExtension = $container->getExtension('sylius_theme');
$themeExtension->addConfigurationSourceFactory(new

→˓CustomConfigurationSourceFactory());
}

}

Usage

Configuration source is set up, it will start providing themes configurations as soon as it is enabled in ThemeBundle:

sylius_theme:
sources:

custom: ~

Theme inheritance

While you can’t set two themes active at once, you can make use of multiple inheritance. Eg.:

{
"name": "vendor/child-theme",
"extra": {

"sylius-theme": {
"title": "Child theme",
"parents": ["vendor/first-parent-theme", "vendor/second-parent-theme"]

}
}

}

{
"name": "vendor/first-parent-theme",
"extra": {

(continues on next page)

9.1. Components & Bundles 671



Sylius

(continued from previous page)

"sylius-theme": {
"title": "First parent theme",
"parents": ["vendor/grand-parent-theme"]

}
}

}

{
"name": "vendor/grand-parent-theme",
"extra": {

"sylius-theme": {
"title": "Grandparent theme"

}
}

}

{
"name": "vendor/second-parent-theme",
"extra": {

"sylius-theme": {
"title": "Second parent theme",

}
}

}

Configuration showed below will result in given order:

• Child theme

• First parent theme

• Grandparent theme

• Second parent theme

Grandparent theme gets overrided by first parent theme. First parent theme and second parent theme get overrided by
child theme.

Theme configuration reference

{
"name": "vendor/sylius-theme",
"title": "Great Sylius theme!",
"description": "Optional description",
"authors": [

{
"name": "Kamil Kokot",
"email": "kamil@kokot.me",
"homepage": "http://kamil.kokot.me",
"role": "Developer"

}
],
"parents": [

"vendor/common-sylius-theme",
"another-vendor/not-so-cool-looking-sylius-theme"

(continues on next page)

672 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

]
}

Warning: Theme configuration was meant to be mixed with the one from Composer. Fields name,
description and authors are shared between these by default. To use different values for Composer &
ThemeBundle, have a look below.

Composer integration

{
"name": "vendor/sylius-theme",
"type": "sylius-theme",
"description": "Composer package description",
"authors": [

{
"name": "Kamil Kokot"

}
],
"extra": {

"sylius-theme": {
"description": "Theme description",
"parents": [

"vendor/other-sylius-theme"
]

}
}

}

Note: By configuring Composer package along with theme we do not have to duplicate fields like name or authors,
but we are free to overwrite them in any time, just like the description field in example above. The theme
configuration is complementary to the Composer configuration and results in perfectly valid composer.json.

Summary

Tests

$ composer install
$ bin/phpspec run -f pretty
$ bin/phpunit

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

9.1. Components & Bundles 673

https://github.com/Sylius/Sylius/issues


Sylius

Learn more

• Themes in the Sylius platform - concept documentation

SyliusUserBundle

A solution for user management system inside of a Symfony application.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use the following command to add the
bundle to your composer.json and download the package.

If you have Composer installed globally.

$ composer require sylius/user-bundle

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/user-bundle

Adding required bundles to the kernel

You need to enable the bundle inside the kernel.

If you’re not using any other Sylius bundles, you will also need to add SyliusResourceBundle and its dependencies to
kernel. Don’t worry, everything was automatically installed via Composer.

<?php

// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
new FOS\RestBundle\FOSRestBundle(),
new JMS\SerializerBundle\JMSSerializerBundle($this),
new Stof\DoctrineExtensionsBundle\StofDoctrineExtensionsBundle(),
new WhiteOctober\PagerfantaBundle\WhiteOctoberPagerfantaBundle(),
new Bazinga\Bundle\HateoasBundle\BazingaHateoasBundle(),
new winzou\Bundle\StateMachineBundle\winzouStateMachineBundle(),
new Sylius\Bundle\ResourceBundle\SyliusResourceBundle(),
new Sylius\Bundle\MailerBundle\SyliusMailerBundle(),
new Sylius\Bundle\UserBundle\SyliusUserBundle(),

// Other bundles...
new Doctrine\Bundle\DoctrineBundle\DoctrineBundle(),

);
}

674 Chapter 9. Components & Bundles

http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally


Sylius

Configure Doctrine extensions

Configure doctrine extensions which are used by the bundle.

# app/config/config.yml
stof_doctrine_extensions:

orm:
default:

timestampable: true

Updating database schema

Run the following command.

$ php bin/console doctrine:schema:update --force

Warning: This should be done only in dev environment! We recommend using Doctrine migrations, to safely
update your schema.

Congratulations! The bundle is now installed and ready to use.

Summary

Note: To be written.

Configuration reference

sylius_user:
driver: doctrine/orm
resources:

admin:
user:

classes:
model: Sylius\Component\Core\Model\AdminUser
repository: Sylius\Bundle\UserBundle\Doctrine\ORM\UserRepository
form: Sylius\Bundle\CoreBundle\Form\Type\User\AdminUserType
interface: Sylius\Component\User\Model\UserInterface
controller: Sylius\Bundle\UserBundle\Controller\UserController
factory: Sylius\Component\Resource\Factory\Factory

templates: 'SyliusUserBundle:User'
resetting:

token:
ttl: P1D
length: 16
field_name: passwordResetToken

pin:
length: 4
field_name: passwordResetToken

(continues on next page)

9.1. Components & Bundles 675



Sylius

(continued from previous page)

verification:
token:

length: 16
field_name: emailVerificationToken

shop:
user:

classes:
model: Sylius\Component\Core\Model\ShopUser
repository: Sylius\Bundle\CoreBundle\Doctrine\ORM\UserRepository
form: Sylius\Bundle\CoreBundle\Form\Type\User\ShopUserType
interface: Sylius\Component\User\Model\UserInterface
controller: Sylius\Bundle\UserBundle\Controller\UserController
factory: Sylius\Component\Resource\Factory\Factory

templates: 'SyliusUserBundle:User'
resetting:

token:
ttl: P1D
length: 16
field_name: passwordResetToken

pin:
length: 4
field_name: passwordResetToken

verification:
token:

length: 16
field_name: emailVerificationToken

oauth:
user:

classes:
model: Sylius\Component\User\Model\UserOAuth
interface: Sylius\Component\User\Model\UserOAuthInterface
controller:

→˓Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\UserBundle\Form\Type\UserType

templates: 'SyliusUserBundle:User'
resetting:

token:
ttl: P1D
length: 16
field_name: passwordResetToken

pin:
length: 4
field_name: passwordResetToken

verification:
token:

length: 16
field_name: emailVerificationToken

phpspec2 examples

$ composer install
$ bin/phpspec run -fpretty --verbose

676 Chapter 9. Components & Bundles



Sylius

Bug tracking

This bundle uses GitHub issues. If you have found bug, please create an issue.

Learn more

• Users & Customers in the Sylius platform - concept documentation

• SyliusAddressingBundle

• SyliusAttributeBundle

• SyliusCustomerBundle

• SyliusFixturesBundle

• SyliusGridBundle

• SyliusInventoryBundle

• SyliusMailerBundle

• SyliusOrderBundle

• SyliusProductBundle

• SyliusPromotionBundle

• SyliusResourceBundle

• SyliusShippingBundle

• SyliusTaxationBundle

• SyliusTaxonomyBundle

• SyliusThemeBundle

• SyliusUserBundle

9.1.2 Sylius Components Documentation

We provide a set of well-tested and decoupled PHP libraries.

The components are the foundation of the Sylius platform, but they can also be used standalone with any PHP appli-
cation even if you use a framework different than Symfony.

These packages solve common E-Commerce and web application problems. Have a look around this documentation
to see if you will find them useful!

We recommend checking out Components General Guide, which will get you started in minutes.

Components General Guide

All Sylius components have very similar structure and this guide will introduce you these conventions.

Through this documentation, you will learn how to install and use them in any PHP application.

9.1. Components & Bundles 677

https://github.com/Sylius/Sylius/issues


Sylius

How to Install and Use the Sylius Components

If you’re starting a new project (or already have a project) that will use one or more components, the easiest way to
integrate everything is with Composer. Composer is smart enough to download the component(s) that you need and
take care of autoloading so that you can begin using the libraries immediately.

This article will take you through using Taxation, though this applies to using any component.

Using the Taxation Component

1. If you’re creating a new project, create a new empty directory for it.

$ mkdir project/
$ cd project/

2. Open a terminal and use Composer to grab the library.

Tip: if you don’t have it already present on your system. Depending on how you install, you may end up with
a composer.phar file in your directory. In that case, no worries! Just run php composer.phar require
sylius/taxation.

$ composer require sylius/taxation

The name sylius/taxation is written at the top of the documentation for whatever component you want.

3. Write your code!

Once Composer has downloaded the component(s), all you need to do is include the vendor/autoload.php file
that was generated by Composer. This file takes care of autoloading all of the libraries so that you can use them
immediately. Open your favorite code editor and start coding:

<?php

// Sample script.php file.

require_once __DIR__.'/vendor/autoload.php';

use Sylius\Component\Taxation\Calculator\DefaultCalculator;
use Sylius\Component\Taxation\Model\TaxRate;

$calculator = new DefaultCalculator();

$taxRate = new TaxRate();
$taxRate->setAmount(0.23);

$taxAmount = $calculator->calculate(100, $taxRate);

echo $taxAmount; // Outputs "23".

You can open the “script.php” file in browser or run it via console:

$ php script.php

678 Chapter 9. Components & Bundles

https://getcomposer.org


Sylius

Using all of the Components

If you want to use all of the Sylius Components, then instead of adding them one by one, you can include the sylius/
sylius package:

$ composer require sylius/sylius

Now what?

Check out What is a Resource?, which will give you basic understanding about how all Sylius components look and
work like.

Enjoy!

What is a Resource?

We refer to data models as “Resources”. In the simplest words, some examples that you will find in Sylius:

• Product

• TaxRate

• Order

• OrderItem

• ShippingMethod

• PaymentMethod

As you can already guess, there are many more Resources in Sylius. It is a really simple but powerful concept that
allows us to create a nice abstraction to handle all the complex logic of E-Commerce. When using Components, you
will have access to the resources provided by them out-of-the-box.

What is more, you will be able to create your own, custom Resources and benefit from all features provided by Sylius.

Now what?

Learn how we handle Creating Resources via Factory pattern.

Creating Resources

Every resource provided by a Sylius component should be created via a factory.

Some resources use the default resource class while some use custom implementations to provide extra functionality.

Using Factory To Create New Resource

To create new resources you should use the default factory implementation.

9.1. Components & Bundles 679



Sylius

<?php

use Sylius\Component\Product\Model\Product;
use Sylius\Component\Resource\Factory\Factory;

$factory = new Factory(Product::class);

$product = $factory->createNew();

That’s it! The $product variable will hold a clean instance of the Product model.

Why Even Bother?

“Hey! This is same as $product = new Product();!”

Yes, and no. Every Factory implements FactoryInterface and this allows you to abstract the way that resources are
created. It also makes testing much simpler because you can mock the Factory and use it as a test double in your
service.

What is more, thanks to usage of Factory pattern, Sylius is able to easily swap the default Product (or any other
resource) model with your custom implementation, without changing code.

Note: For more detailed information go to Sylius API Factory.

Caution: In a concrete Component’s documentation we will use new keyword to create resources - just to keep
things simpler to read.

Addressing

Sylius Addressing component for PHP E-Commerce applications which provides you with basic Address, Country,
Province and Zone models.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/addressing on Packagist);

• Use the official Git repository (https://github.com/Sylius/Addressing).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

ZoneMatcher

Zones are not very useful by themselves, but they can take part in e.g. a complex taxation/shipping system. This
service is capable of getting a Zone specific for given Address.

680 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Resource/Factory/FactoryInterface.html
http://api.sylius.com/Sylius/Component/Resource/Factory/Factory.html
https://packagist.org/packages/sylius/addressing
https://github.com/Sylius/Addressing


Sylius

It uses a collaborator implementing Doctrine’s ObjectRepository interface to obtain all available zones, compare them
with given Address and return best fitted Zone.

First lets make some preparations.

<?php

use Sylius\Component\Addressing\Model\Address;
use Sylius\Component\Addressing\Model\Zone;
use Sylius\Component\Addressing\Model\ZoneInterface;
use Sylius\Component\Addressing\Model\ZoneMember;
use Sylius\Component\Resource\Repository\InMemoryRepository;

$zoneRepository = new InMemoryRepository(ZoneInterface::class);
$zone = new Zone();
$zoneMember = new ZoneMember();

$address = new Address();
$address->setCountry('US');

$zoneMember->setCode('US');
$zoneMember->setBelongsTo($zone);

$zone->addMember($zoneMember);

$zoneRepository->add($zone);

Now that we have all the needed parts lets match something.

<?php

use Sylius\Component\Addressing\Matcher\ZoneMatcher;

$zoneMatcher = new ZoneMatcher($zoneRepository);

$zoneMatcher->match($address); // returns the best matching zone
// for the address given, in this case $zone

ZoneMatcher can also return all zones containing given Address.

<?php

$zoneMatcher->matchAll($address); // returns all zones containing given $address

To be more specific you can provide a scope which will narrow the search only to zones with same corresponding
property.

<?php

$zone->setScope('earth');

$zoneMatcher->match($address, 'earth'); // returns $zone
$zoneMatcher->matchAll($address, 'mars'); // returns null as there is no

// zone with 'mars' scope

Note: This service implements the ZoneMatcherInterface.

9.1. Components & Bundles 681

http://www.doctrine-project.org/api/common/2.4/class-Doctrine.Common.Persistence.ObjectRepository.html


Sylius

Caution: Throws \InvalidArgumentException.

Models

Address

The customer’s address is represented by an Address model. It should contain all data concerning customer’s address
and as default has the following properties:

Property Description
id Unique id of the address
firstName Customer’s first name
lastName Customer’s last name
phoneNumber Customer’s phone number
company Company name
country Country’s ISO code
province Province’s code
street Address’ street
city Address’ city
postcode Address’ postcode
createdAt Date when address was created
updatedAt Date of last address’ update

Note: This model implements the AddressInterface.

For more detailed information go to Sylius API Address.

Country

The geographical area of a country is represented by a Country model. It should contain all data concerning a country
and as default has the following properties:

Property Description
id Unique id of the country
code Country’s ISO code
provinces Collection of Province objects
enabled Indicates whether country is enabled

Note: This model implements the CountryInterface and CodeAwareInterface.

For more detailed information go to Sylius API Country.

682 Chapter 9. Components & Bundles

http://php.net/manual/en/class.invalidargumentexception.php
http://api.sylius.com/Sylius/Component/Addressing/Model/Address.html
http://api.sylius.com/Sylius/Component/Addressing/Model/Country.html


Sylius

Province

Smaller area inside a country is represented by a Province model. You can use it to manage provinces or states and
assign it to an address as well. It should contain all data concerning a province and as default has the following
properties:

Property Description
id Unique id of the province
code Unique code of the province
name Province’s name
country The Country this province is assigned to

Note: This model implements the ProvinceInterface and CodeAwareInterface.

For more detailed information go to Sylius API Province.

Zone

The geographical area is represented by a Zone model. It should contain all data concerning a zone and as default has
the following properties:

Property Description
id Unique id of the zone
code Unique code of the zone
name Zone’s name
type Zone’s type
scope Zone’s scope
members All of the ZoneMember objects assigned to this zone

Note: This model implements the ZoneInterface and CodeAwareInterface.

For more detailed information go to Sylius API Zone.

ZoneMember

In order to add a specific location to a Zone, an instance of ZoneMember must be created with that location’s code.
On default this model has the following properties:

Property Description
id Unique id of the zone member
code Unique code of affiliated member i.e. country’s code
belongsTo The Zone this member is assigned to

Note: This model implements ZoneMemberInterface and CodeAwareInterface.

For more detailed information go to Sylius API ZoneMember.

9.1. Components & Bundles 683

http://api.sylius.com/Sylius/Component/Addressing/Model/Province.html
http://api.sylius.com/Sylius/Component/Addressing/Model/Zone.html
http://api.sylius.com/Sylius/Component/Addressing/Model/ZoneMember.html


Sylius

Interfaces

Model Interfaces

AddressInterface

This interface should be implemented by models representing the customer’s address.

Note: This interface extends TimestampableInterface.

For more detailed information go to Sylius API AddressInterface.

CountryInterface

This interfaces should be implemented by models representing a country.

Note: This interface extends ToggleableInterface.

For more detailed information go to Sylius API CountryInterface.

ProvinceInterface

This interface should be implemented by models representing a part of a country.

Note: For more detailed information go to Sylius API ProvinceInterface.

ZoneInterface

This interface should be implemented by models representing a single zone.

It also holds all the Zone Types.

Note: For more detailed information go to Sylius API ZoneInterface.

ZoneMemberInterface

This interface should be implemented by models that represent an area a specific zone contains, e.g. all countries in
the European Union.

Note: For more detailed information go to Sylius API ZoneMemberInterface.

684 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Addressing/Model/AddressInterface.html
http://api.sylius.com/Sylius/Component/Addressing/Model/CountryInterface.html
http://api.sylius.com/Sylius/Component/Addressing/Model/ProvinceInterface.html
http://api.sylius.com/Sylius/Component/Addressing/Model/ZoneInterface.html
http://api.sylius.com/Sylius/Component/Addressing/Model/ZoneMemberInterface.html


Sylius

Service Interfaces

RestrictedZoneCheckerInterface

A service implementing this interface should be able to check if given Address is in a restricted zone.

Note: For more detailed information go to Sylius API RestrictedZoneCheckerInterface.

ZoneMatcherInterface

This interface should be implemented by a service responsible of finding the best matching zone, and all zones con-
taining the provided Address.

Note: For more detailed information go to Sylius API ZoneMatcherInterface.

Zone Types

There are three zone types available by default:

Related constant Type
TYPE_COUNTRY country
TYPE_PROVINCE province
TYPE_ZONE zone

Note: All of the above types are constant fields in the ZoneInterface.

Learn more

• Addresses in the Sylius platform - concept documentation

Attribute

Handling of dynamic attributes on PHP models is a common task for most of modern business applications. Sylius
component makes it easier to handle different types of attributes and attach them to any object by implementing a
simple interface.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/attribute on Packagist).

• Use the official Git repository (https://github.com/Sylius/Attribute).

9.1. Components & Bundles 685

http://api.sylius.com/Sylius/Component/Addressing/Checker/RestrictedZoneCheckerInterface.html
http://api.sylius.com/Sylius/Component/Addressing/Matcher/ZoneMatcherInterface.html
https://packagist.org/packages/sylius/attribute
https://github.com/Sylius/Attribute


Sylius

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

Creating an attributable class

In the following example you will see a minimalistic implementation of the AttributeSubjectInterface.

<?php

namespace App\Model;

use Sylius\Component\Attribute\Model\AttributeSubjectInterface;
use Sylius\Component\Attribute\Model\AttributeValueInterface;
use Doctrine\Common\Collections\Collection;

class Shirt implements AttributeSubjectInterface
{

/**
* @var AttributeValueInterface[]

*/
private $attributes;

/**
* {@inheritdoc}

*/
public function getAttributes()
{

return $this->attributes;
}

/**
* {@inheritdoc}

*/
public function setAttributes(Collection $attributes)
{

foreach ($attributes as $attribute) {
$this->addAttribute($attribute);

}
}

/**
* {@inheritdoc}

*/
public function addAttribute(AttributeValueInterface $attribute)
{

if (!$this->hasAttribute($attribute)) {
$attribute->setSubject($this);
$this->attributes[] = $attribute;

}
}

/**
* {@inheritdoc}

*/

(continues on next page)

686 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

public function removeAttribute(AttributeValueInterface $attribute)
{

if ($this->hasAttribute($attribute)){
$attribute->setSubject(null);
$key = array_search($attribute, $this->attributes);
unset($this->attributes[$key]);

}
}

/**
* {@inheritdoc}

*/
public function hasAttribute(AttributeValueInterface $attribute)
{

return in_array($attribute, $this->attributes);
}

/**
* {@inheritdoc}

*/
public function hasAttributeByName($attributeName)
{

foreach ($this->attributes as $attribute) {
if ($attribute->getName() === $attributeName) {

return true;
}

}

return false;
}

/**
* {@inheritdoc}

*/
public function getAttributeByName($attributeName)
{

foreach ($this->attributes as $attribute) {
if ($attribute->getName() === $attributeName) {

return $attribute;
}

}

return null;
}

/**
* {@inheritdoc}

*/
public function hasAttributeByCodeAndLocale($attributeCode, $localeCode = null)
{

}

/**
* {@inheritdoc}

*/
public function getAttributeByCodeAndLocale($attributeCode, $localeCode = null)

(continues on next page)

9.1. Components & Bundles 687



Sylius

(continued from previous page)

{

}
}

Note: An implementation similar to the one above has been done in the Product model.

Adding attributes to an object

Once we have our class we can characterize it with attributes.

<?php

use App\Model\Shirt;
use Sylius\Component\Attribute\Model\Attribute;
use Sylius\Component\Attribute\Model\AttributeValue;
use Sylius\Component\Attribute\AttributeType\TextAttributeType;
use Sylius\Component\Attribute\Model\AttributeValueInterface;

$attribute = new Attribute();
$attribute->setName('Size');
$attribute->setType(TextAttributeType::TYPE);
$attribute->setStorageType(AttributeValueInterface::STORAGE_TEXT);

$smallSize = new AttributeValue();
$mediumSize = new AttributeValue();

$smallSize->setAttribute($attribute);
$mediumSize->setAttribute($attribute);

$smallSize->setValue('S');
$mediumSize->setValue('M');

$shirt = new Shirt();

$shirt->addAttribute($smallSize);
$shirt->addAttribute($mediumSize);

Or you can just add all attributes needed using a class implementing Doctrine’s Collection interface, e.g. the Array-
Collection class.

Warning: Beware! It’s really important to set proper attribute storage type, which should reflect value type that
is set in AttributeValue.

<?php

use Doctrine\Common\Collections\ArrayCollection;

$attributes = new ArrayCollection();

$attributes->add($smallSize);

(continues on next page)

688 Chapter 9. Components & Bundles

http://www.doctrine-project.org/api/common/2.3/class-Doctrine.Common.Collections.Collection.html
http://www.doctrine-project.org/api/common/2.3/class-Doctrine.Common.Collections.ArrayCollection.html
http://www.doctrine-project.org/api/common/2.3/class-Doctrine.Common.Collections.ArrayCollection.html


Sylius

(continued from previous page)

$attributes->add($mediumSize);

$shirt->setAttributes($attributes);

Note: Notice that you don’t actually add an Attribute to the subject, instead you need to add every AttributeValue
assigned to the attribute.

Accessing attributes

<?php

$shirt->getAttributes(); // returns an array containing all set attributes

$shirt->hasAttribute($smallSize); // returns true
$shirt->hasAttribute($hugeSize); // returns false

Accessing attributes by name

<?php

$shirt->hasAttributeByName('Size'); // returns true

$shirt->getAttributeByName('Size'); // returns $smallSize

Removing an attribute

<?php

$shirt->hasAttribute($smallSize); // returns true

$shirt->removeAttribute($smallSize);

$shirt->hasAttribute($smallSize); // now returns false

Models

Attribute

Every attribute is represented by the Attribute model which by default has the following properties:

9.1. Components & Bundles 689



Sylius

Property Description
id Unique id of the attribute
type Attribute’s type (‘text’ by default)
name Attribute’s name
configuration Attribute’s configuration
validation Attribute’s validation configuration
values Collection of attribute values
storageType Defines how attribute value should be stored in database
createdAt Date when attribute was created
updatedAt Date of last attribute update

Note: This model uses the Using TranslatableTrait and implements the AttributeInterface.

For more detailed information go to Sylius API Attribute.

Attention: Attribute’s type is an alias of AttributeType service.

AttributeValue

This model binds the subject and the attribute, it is used to store the value of the attribute for the subject. It has the
following properties:

Property Description
id Unique id of the attribute value
subject Reference to attribute’s subject
attribute Reference to an attribute
value Attribute’s value (not mapped)
text Value of attribute stored as text
boolean Value of attribute stored as boolean
integer Value of attribute stored as integer
float Value of attribute stored as float
datetime Value of attribute stored as datetime
date Value of attribute stored as date

Attention: Value property is used only as proxy, that stores data in proper field. It’s crucial to set attribute value
in field, that is mapped as attribute’s storage type.

Note: This model implements the AttributeValueInterface.

For more detailed information go to Sylius API AttributeValue.

690 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Attribute/Model/Attribute.html
http://api.sylius.com/Sylius/Component/Attribute/Model/AttributeValue.html


Sylius

AttributeTranslation

The attribute’s name for different locales is represented by the AttributeTranslation model which has the following
properties:

Property Description
id Unique id of the attribute translation
name Attribute’s name for given locale

Note: This model extends the Implementing AbstractTranslation class and implements the AttributeTranslationInter-
face.

For more detailed information go to Sylius API AttributeTranslation.

Interfaces

Model Interfaces

AttributeInterface

This interface should be implemented by models used for describing a product’s attribute.

Note: This interface extends the TimestampableInterface and the AttributeTranslationInterface.

For more detailed information go to Sylius API AttributeInterface.

AttributeValueInterface

This interface should be implemented by models used for binding an Attribute with a model implementing the At-
tributeSubjectInterface e.g. the Product.

Note: For more detailed information go to Sylius API AttributeValueInterface.

AttributeTranslationInterface

This interface should be implemented by models maintaining a single translation of an Attribute for specified locale.

Note: For more detailed information go to Sylius API AttributeTranslationInterface.

AttributeSubjectInterface

This interface should be implemented by models you want to characterize with various AttributeValue objects.

9.1. Components & Bundles 691

http://api.sylius.com/Sylius/Component/Attribute/Model/AttributeTranslation.html
http://api.sylius.com/Sylius/Component/Attribute/Model/AttributeInterface.html
http://api.sylius.com/Sylius/Component/Attribute/Model/AttributeValueInterface.html
http://api.sylius.com/Sylius/Component/Attribute/Model/AttributeTranslationInterface.html


Sylius

It will ask you to implement the management of AttributeValue models.

Note: For more detailed information go to Sylius API AttributeSubjectInterface.

AttributeTypeInterface

This interface should be implemented by models used for describing a product’s attribute type.

Learn more

• Attributes in the Sylius platform - concept documentation

Channel

Sale channels management implementation in PHP.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/channel on Packagist);

• Use the official Git repository (https://github.com/Sylius/Channel).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

ChannelContext

The ChannelContext allows you to manage the currently used sale channel.

<?php

use Sylius\Component\Channel\Context\ChannelContext;
use Sylius\Component\Channel\Model\Channel;

$channel = new Channel();
$channelContext = new ChannelContext();

$channelContext->setChannel($channel);

$channelContext->getChannel(); // will return the $channel object

692 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Attribute/Model/AttributeSubjectInterface.html
https://packagist.org/packages/sylius/channel
https://github.com/Sylius/Channel


Sylius

Models

Channel

Sale channel is represented by a Channel model. It should have everything concerning channel’s data and as default
has the following properties:

Property Description
id Unique id of the channel
code Channel’s code
name Channel’s name
description Channel’s description
url Channel’s URL
color Channel’s color
enabled Indicates whether channel is available
createdAt Date of creation
updatedAt Date of update

Note: This model implements ChannelInterface.

For more detailed information go to Sylius API Channel.

Interfaces

Model Interfaces

ChannelInterface

This interface should be implemented by every custom sale channel model.

Note: This interface extends TimestampableInterface and CodeAwareInterface.

For more detailed information go to Sylius API ChannelInterface.

ChannelAwareInterface

This interface should be implemented by models associated with a specific sale channel.

Note: For more detailed information go to Sylius API ChannelAwareInterface.

ChannelsAwareInterface

This interface should be implemented by models associated with multiple channels.

9.1. Components & Bundles 693

http://api.sylius.com/Sylius/Component/Channel/Model/Channel.html
http://api.sylius.com/Sylius/Component/Channel/Model/ChannelInterface.html
http://api.sylius.com/Sylius/Component/Channel/Model/ChannelAwareInterface.html


Sylius

Note: For more detailed information go to Sylius API ChannelsAwareInterface.

Service Interfaces

Learn more

• Channels in the Sylius platform - concept documentation

Currency

Managing different currencies, exchange rates and converting cash amounts for PHP applications.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/currency on Packagist);

• Use the official Git repository (https://github.com/Sylius/Currency).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

Getting a Currency name

<?php

use Sylius\Component\Currency\Model\Currency;

$currency = new Currency();
$currency->setCode('USD');

$currency->getName(); // Returns 'US Dollar'.

The getName method uses Symfony’s Intl class to convert currency’s code into a human friendly form.

Note: The output of getName may vary as the name is generated accordingly to the set locale.

CurrencyConverter

The CurrencyConverter allows you to convert a value accordingly to the exchange rate of specified currency.

This behaviour is used just for displaying the approximate value in another currency than the base currency of the
channel.

694 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Channel/Model/ChannelsAwareInterface.html
https://packagist.org/packages/sylius/currency
https://github.com/Sylius/Currency
http://symfony.com/doc/current/components/intl.html


Sylius

Note: This service implements the CurrencyConverterInterface.

For more detailed information go to Sylius API CurrencyConverter.

Caution: Throws UnavailableCurrencyException.

CurrencyProvider

The CurrencyProvider allows you to get all available currencies.

<?php

use Sylius\Component\Currency\Provider\CurrencyProvider;
use Sylius\Component\Resource\Repository\InMemoryRepository;

$currencyRepository = new InMemoryRepository();
$currencyProvider = new CurrencyProvider($currencyRepository);

$currencyProvider->getAvailableCurrencies(); // Returns an array of Currency objects.

The getAvailableCurrencies method retrieves all currencies which enabled property is set to true and have
been inserted in the given repository.

Note: This service implements the CurrencyProviderInterface.

For more detailed information go to Sylius API CurrencyProvider.

Models

Currency

Every currency is represented by a Currency model which by default has the following properties:

Method Description
id Unique id of the currency
code Currency’s code
createdAt Date of creation
updatedAt Date of last update

Note: This model implements CurrencyInterface.

For more detailed information go to Sylius API Currency.

Interfaces

9.1. Components & Bundles 695

http://api.sylius.com/Sylius/Component/Currency/Converter/CurrencyConverter.html
http://api.sylius.com/Sylius/Component/Currency/Provider/CurrencyProvider.html
http://api.sylius.com/Sylius/Component/Currency/Model/Currency.html


Sylius

Model Interfaces

CurrencyInterface

This interface provides you with basic management of a currency’s code, name, exchange rate and whether the cur-
rency should be enabled or not.

Note: This interface extends CodeAwareInterface and TimestampableInterface.

For more detailed information go to Sylius API CurrencyInterface.

Service Interfaces

CurrenciesAwareInterface

Any container used to store, and manage currencies should implement this interface.

Note: For more detailed information go to Sylius API CurrenciesAwareInterface.

CurrencyContextInterface

This interface should be implemented by a service used for managing the currency name. It also contains the default
storage key:

Related constant Storage key
STORAGE_KEY _sylius_currency

Note: For more detailed information go to Sylius API CurrencyContextInterface.

CurrencyConverterInterface

This interface should be implemented by any service used to convert the amount of money from one currency to
another, according to their exchange rates.

Note: For more detailed information go to Sylius API CurrencyConverterInterface.

CurrencyProviderInterface

This interface allows you to implement one fast service which gets all available currencies from any container you
would like.

696 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Currency/Model/CurrencyInterface.html
http://api.sylius.com/Sylius/Component/Currency/Model/CurrenciesAwareInterface.html
http://api.sylius.com/Sylius/Component/Currency/Context/CurrencyContextInterface.html
http://api.sylius.com/Sylius/Component/Currency/Converter/CurrencyConverterInterface.html


Sylius

Note: For more detailed information go to Sylius API CurrencyProviderInterface.

UnavailableCurrencyException

This exception is thrown when you try converting to a currency which is not present in the provided repository.

Note: This exception extends the \InvalidArgumentException.

Learn more

• Currencies in the Sylius platform - concept documentation

Grid

Sylius component used for describing data grids. Decoupled from Symfony and useful for any kind of system, which
needs to provide user with grid functionality.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use following command to add the
component to your composer.json and download package.

If you have Composer installed globally.

$ composer require sylius/grid

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/grid

Summary

phpspec examples

$ composer install
$ bin/phpspec run -fpretty --verbose

Bug tracking

This component uses GitHub issues. If you have found bug, please create an issue.

9.1. Components & Bundles 697

http://api.sylius.com/Sylius/Component/Currency/Provider/CurrencyProviderInterface.html
http://php.net/manual/en/class.invalidargumentexception.php
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally
https://github.com/Sylius/Sylius/issues


Sylius

Inventory

Inventory management for PHP applications.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/inventory on Packagist);

• Use the official Git repository (https://github.com/Sylius/Inventory).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

Stockable Object

The first thing you should do it is implementing stockable object. Example implementation:

<?php

class Product implements StockableInterface
{

/**
* Get stock keeping unit.

*
* @return mixed

*/
public function getSku()
{

// TODO: Implement getSku() method.
}

/**
* Get inventory displayed name.

*
* @return string

*/
public function getInventoryName()
{

// TODO: Implement getInventoryName() method.
}

/**
* Simply checks if there any stock available.

*
* @return Boolean

*/
public function isInStock()
{

// TODO: Implement isInStock() method.
}

(continues on next page)

698 Chapter 9. Components & Bundles

https://packagist.org/packages/sylius/inventory
https://github.com/Sylius/Inventory


Sylius

(continued from previous page)

/**
* Get stock on hold.

*
* @return integer

*/
public function getOnHold()
{

// TODO: Implement getOnHold() method.
}

/**
* Set stock on hold.

*
* @param integer

*/
public function setOnHold($onHold)
{

// TODO: Implement setOnHold() method.
}

/**
* Get stock on hand.

*
* @return integer

*/
public function getOnHand()
{

// TODO: Implement getOnHand() method.
}

/**
* Set stock on hand.

*
* @param integer $onHand

*/
public function setOnHand($onHand)
{

// TODO: Implement setOnHand() method.
}

}

InventoryOperator

The InventoryOperator provides basic operations on your inventory.

<?php

use Sylius\Component\Inventory\Operator\InventoryOperator;
use Sylius\Component\Inventory\Checker\AvailabilityChecker;
use Sylius\Component\Resource\Repository\InMemoryRepository;

$inMemoryRepository = new InMemoryRepository(); // Repository model.
$product = new Product(); // Stockable model.
$eventDispatcher; // It gives a possibility to hook before or after each operation.
// If you are not familiar with events, check the symfony Event Dispatcher.

(continues on next page)

9.1. Components & Bundles 699



Sylius

(continued from previous page)

$availabilityChecker = new AvailabilityChecker(false);
$inventoryOperator = new InventoryOperator($availabilityChecker, $eventDispatcher);

$product->getOnHand(); // Output will be 0.
$inventoryOperator->increase($product, 5);
$product->getOnHand(); // Output will be 5.

$product->getOnHold(); // Output will be 0.
$inventoryOperator->hold($product, 4);
$product->getOnHold(); // Output will be 4.

$inventoryOperator->release($product, 3);
$product->getOnHold(); // Output will be 1.

Decrease

<?php

use Sylius\Component\Inventory\Operator\InventoryOperator;
use Sylius\Component\Inventory\Checker\AvailabilityChecker;
use Doctrine\Common\Collections\ArrayCollection;
use Sylius\Component\Inventory\Model\InventoryUnit;
use Sylius\Component\Inventory\Model\InventoryUnitInterface;

$inventoryUnitRepository; // Repository model.
$product = new Product(); // Stockable model.
$eventDispatcher; // It gives possibility to hook before or after each operation.
// If you are not familiar with events. Check symfony event dispatcher.

$availabilityChecker = new AvailabilityChecker(false);
$inventoryOperator = new InventoryOperator($availabilityChecker, $eventDispatcher);
$inventoryUnit1 = new InventoryUnit();
$inventoryUnit2 = new InventoryUnit();
$inventoryUnits = new ArrayCollection();
$product->getOnHand(); // Output will be 5.

$inventoryUnit1->setStockable($product);
$inventoryUnit1->setInventoryState(InventoryUnitInterface::STATE_SOLD);

$inventoryUnit2->setStockable($product);

$inventoryUnits->add($inventoryUnit1);
$inventoryUnits->add($inventoryUnit2);

count($inventoryUnits); // Output will be 2.
$inventoryOperator->decrease($inventoryUnits);
$product->getOnHand(); // Output will be 4.

Caution: All methods in InventoryOperator throw InvalidArgumentException or InsufficientStockException if
an error occurs.

700 Chapter 9. Components & Bundles

http://php.net/manual/en/class.invalidargumentexception.php
http://api.sylius.com/Sylius/Component/Inventory/Operator/InsufficientStockException.html


Sylius

Note: For more detailed information go to Sylius API InventoryOperator.

Hint: To understand how events work check Symfony EventDispatcher.

NoopInventoryOperator

In some cases, you may want to have unlimited inventory, this operator will allow you to do that.

Hint: This operator is based on the null object pattern. For more detailed information go to Null Object pattern.

Note: For more detailed information go to Sylius API NoopInventoryOperator.

AvailabilityChecker

The AvailabilityChecker checks availability of a given stockable object. To characterize an object which
is an AvailabilityChecker, it needs to implement the AvailabilityCheckerInterface. Second parameter of the
->isStockSufficient() method gives a possibility to check for a given quantity of a stockable.

<?php

use Sylius\Component\Inventory\Checker\AvailabilityChecker;

$product = new Product(); // Stockable model.
$product->getOnHand(); // Output will be 5
$product->getOnHold(); // Output will be 4

$availabilityChecker = new AvailabilityChecker(false);
$availabilityChecker->isStockAvailable($product); // Output will be true.
$availabilityChecker->isStockSufficient($product, 5); // Output will be false.

InventoryUnitFactory

The InventoryUnitFactory creates a collection of new inventory units.

<?php

use Sylius\Component\Inventory\Factory\InventoryUnitFactory;
use Sylius\Component\Inventory\Model\InventoryUnitInterface;

$inventoryUnitRepository; // Repository model.
$product = new Product(); // Stockable model.

$inventoryUnitFactory = new InventoryUnitFactory($inventoryUnitRepository);

$inventoryUnits = $inventoryUnitFactory->create($product, 10,
→˓InventoryUnitInterface::STATE_RETURNED);

(continues on next page)

9.1. Components & Bundles 701

http://api.sylius.com/Sylius/Component/Inventory/Operator/InventoryOperator.html
http://symfony.com/doc/current/components/event_dispatcher/introduction.html
https://en.wikipedia.org/wiki/Null_Object_pattern
http://api.sylius.com/Sylius/Component/Inventory/Operator/NoopInventoryOperator.html


Sylius

(continued from previous page)

// Output will be collection of inventory units.

$inventoryUnits[0]->getStockable(); // Output will be your's stockable model.
$inventoryUnits[0]->getInventoryState(); // Output will be 'returned'.
count($inventoryUnits); // Output will be 10.

Note: For more detailed information go to Sylius API InventoryUnitFactory.

Models

InventoryUnit

InventoryUnit object represents an inventory unit. InventoryUnits have the following properties:

Property Description
id Unique id of the inventory unit
stockable Reference to any stockable unit. (Implements StockableInterface)
inventoryState State of the inventory unit (e.g. “checkout”, “sold”)
createdAt Date when inventory unit was created
updatedAt Date of last change

Note: This model implements the InventoryUnitInterface For more detailed information go to Sylius API Invento-
ryUnit.

Interfaces

Model Interfaces

InventoryUnitInterface

This interface should be implemented by model representing a single InventoryUnit.

Hint: It also contains the default State Machine.

Note: This interface extends TimestampableInterface.

For more detailed information go to Sylius API InventoryUnitInterface.

StockableInterface

This interface provides basic operations for any model that can be stored.

702 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Inventory/Factory/InventoryUnitFactory.html
http://api.sylius.com/Sylius/Component/Inventory/Model/InventoryUnitInterface.html
http://api.sylius.com/Sylius/Component/Inventory/Model/InventoryUnitInterface.html
http://api.sylius.com/Sylius/Component/Inventory/Model/InventoryUnitInterface.html


Sylius

Note: For more detailed information go to Sylius API StockableInterface.

Service Interfaces

AvailabilityCheckerInterface

This interface provides methods for checking availability of stockable objects.

Note: For more detailed information go to Sylius API AvailabilityCheckerInterface.

InventoryUnitFactoryInterface

This interface is implemented by services responsible for creating collection of new inventory units.

Note: For more detailed information go to Sylius API InventoryUnitFactoryInterface.

State Machine

Inventory Unit States

Sylius itself uses a complex state machine system to manage all states of the business domain. This component has
some sensible default states defined in the InventoryUnitInterface.

All new InventoryUnit instances have the state checkout by default, which means they are in the cart and wait for
verification.

The following states are defined:

Related constant State Description
STATE_CHECKOUT checkout Item is in the cart
STATE_ONHOLD onhold Item is hold (e.g. waiting for the payment)
STATE_SOLD sold Item has been sold and is no longer in the warehouse
STATE_RETURNED returned Item has been sold, but returned and is in stock

Tip: Please keep in mind that these states are just default, you can define and use your own. If you use this component
with SyliusInventoryBundle and Symfony, you will have full state machine configuration at your disposal.

Inventory Unit Transitions

There are the following order’s transitions by default:

9.1. Components & Bundles 703

http://api.sylius.com/Sylius/Component/Inventory/Model/StockableInterface.html
http://api.sylius.com/Sylius/Component/Inventory/Checker/AvailabilityCheckerInterface.html
http://api.sylius.com/Sylius/Component/Inventory/Factory/InventoryUnitFactoryInterface.html


Sylius

Related constant Transition
SYLIUS_HOLD hold
SYLIUS_SELL sell
SYLIUS_RELEASE release
SYLIUS_RETURN return

There is also the default graph name included:

Related constant Name
GRAPH sylius_inventory_unit

Note: All of above transitions and the graph are constant fields in the InventoryUnitTransitions class.

Learn more

• Inventory in the Sylius platform - concept documentation

Locale

Managing different locales for PHP apps.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/locale on Packagist);

• Use the official Git repository (https://github.com/Sylius/Locale).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

LocaleContext

In the Locale component there are three LocaleContexts defined: * CompositeLocaleContext *
ImmutableLocaleContext * ProviderBasedLocaleContext

CompositeLocaleContext

It is a composite of different contexts available in your application, which are prioritized while being injected here
(the one with highest priority is used). It has the getLocaleCode() method available, that helps you to get the
currently used locale.

704 Chapter 9. Components & Bundles

https://packagist.org/packages/sylius/locale
https://github.com/Sylius/Locale


Sylius

LocaleProvider

The LocaleProvider allows you to get all available locales.

<?php

use Sylius\Component\Locale\Provider\LocaleProvider;

$locales = new InMemoryRepository();

$localeProvider = new LocaleProvider($locales);

$localeProvider->getAvailableLocalesCodes() //Output will be a collection of
→˓available locales
$localeProvider->isLocaleAvailable('en') //It will check if that locale is enabled

Note: For more detailed information go to Sylius API LocaleProvider.

Models

Locale

Locale represents one locale available in the application. It uses Symfony Intl component to return locale name.
Locale has the following properties:

Property Description
id Unique id of the locale
code Locale’s code
createdAt Date when locale was created
updatedAt Date of last change

Hint: This model has one const STORAGE_KEY it is key used to store the locale in storage.

Note: This model implements the LocaleInterface For more detailed information go to Sylius API Locale.

Interfaces

Model Interfaces

LocaleInterface

This interface should be implemented by models representing a single Locale.

Note: This interface extends CodeAwareInterface and TimestampableInterface.

9.1. Components & Bundles 705

http://api.sylius.com/Sylius/Component/Locale/Provider/LocaleProvider.html
http://symfony.com/doc/current/components/intl.html
http://api.sylius.com/Sylius/Component/Locale/Model/Locale.html


Sylius

For more detailed information go to Sylius API LocaleInterface.

LocalesAwareInterface

This interface provides basic operations for locale management. If you want to have locales in your model just
implement this interface.

Note: For more detailed information go to Sylius API LocalesAwareInterface.

Service Interfaces

LocaleContextInterface

This interface is implemented by the service responsible for managing the current locale.

Note: For more detailed information go to Sylius API LocaleContextInterface.

LocaleProviderInterface

This interface is implemented by the service responsible for providing you with a list of available locales.

Note: For more detailed information go to Sylius API LocaleProviderInterface.

Learn more

• Locales in the Sylius platform - concept documentation

Mailer

Sylius Mailer component abstracts the process of sending e-mails. It also provides interface to configure various
parameters for unique e-mails.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/mailer on Packagist);

• Use the official Git repository (https://github.com/Sylius/Mailer).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

706 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Locale/Model/LocaleInterface.html
http://api.sylius.com/Sylius/Component/Locale/Model/LocalesAwareInterface.html
http://api.sylius.com/Sylius/Component/Locale/Context/LocaleContextInterface.html
http://api.sylius.com/Sylius/Component/Locale/Provider/LocaleProviderInterface.html
https://packagist.org/packages/sylius/mailer
https://github.com/Sylius/Mailer


Sylius

Basic usage

Sender

SenderAdapter

This is an abstraction layer that allows you to create your own logic of sending an email.

<?php

use Sylius\Component\Mailer\Sender\Adapter\AbstractAdapter as BaseSenderAdapter;
use Sylius\Component\Mailer\Model\EmailInterface;
use Sylius\Component\Mailer\Model\Email;

class SenderAdapter extends BaseSenderAdapter
{

/**
* Send an e-mail.

*
* @param array $recipients

* @param string $senderAddress

* @param string $senderName

* @param RenderedEmail $renderedEmail

* @param EmailInterface $email

*/
public function send(array $recipients, $senderAddress, $senderName,

→˓RenderedEmail $renderedEmail, EmailInterface $email, array $data)
{

// TODO: Implement send() method.
}

}

$email = new Email();

$email->setCode('christmas_party_invitation');
$email->setContent('Hi, we would like to invite you to christmas party');
$email->setSubject('Christmas party');
$email->setSenderAddress('mike.ehrmantraut@gmail.com');
$email->setSenderName('Mike Ehrmantraut');

$senderAdapter = new SenderAdapter();
$rendererAdapter = new RendererAdapter();

$renderedEmail = $rendererAdapter->render($email, $data);

$senderAdapter->send(array('john.doe@gmail.com'), $email->getSenderAddress(), $email->
→˓getSenderName(), $renderedEmail, $email, array())

Sender

This service collects those two adapters SenderAdapter, RendererAdapter and deals with process of sending an
email.

<?php

(continues on next page)

9.1. Components & Bundles 707



Sylius

(continued from previous page)

use Sylius\Component\Mailer\Provider\DefaultSettingsProvider;
use Sylius\Component\Mailer\Provider\EmailProvider;
use Sylius\Component\Mailer\Sender\Sender;

$sender = new Sender($rendererAdapter, $senderAdapter, $emailProvider,
→˓$defaultSettingsProvider);

$sender->send('christmas_party_invitation', array('mike.ehrmantraut@gmail.com'));

Renderer

RendererAdapter

This is an abstraction layer that allows you to create your own logic of rendering an email object.

<?php

use Sylius\Component\Mailer\Renderer\Adapter\AbstractAdapter as BaseRendererAdapter;
use Sylius\Component\Mailer\Model\EmailInterface;
use Sylius\Component\Mailer\Model\Email;

class RendererAdapter extends BaseRendererAdapter
{

/**
* Render an e-mail.

*
* @param EmailInterface $email

* @param array $data

*
* @return RenderedEmail

*/
public function render(EmailInterface $email, array $data = array())
{

// TODO: Implement render() method.

return new RenderedEmail($subject, $body);
}

}

$email = new Email();

$email->setCode('christmas_party_invitation');
$email->setContent('Hi, we would like to invite you to christmas party');
$email->setSubject('Christmas party');
$email->setSenderAddress('mike.ehrmantraut@gmail.com');
$email->setSenderName('Mike Ehrmantraut');

$rendererAdapter = new RendererAdapter();
$renderedEmail = $rendererAdapter->render($email, $data); // It will render an email
→˓object based on your implementation.

$renderedEmail->getBody(); // Output will be Hi, we would .....
$renderedEmail->getSubject(); // Output will be Christmas party.

708 Chapter 9. Components & Bundles



Sylius

Hint: Renderer should return RenderedEmail

DefaultSettingsProvider

The DefaultSettingsProvider is service which provides you with default sender address and sender name.

<?php

use Sylius\Component\Mailer\Provider\DefaultSettingsProvider;

$defaultSettingsProvider = new DefaultSettingsProvider('Mike Ehrmantraut', 'mike.
→˓ehrmantraut@gmail.com');

$defaultSettingsProvider->getSenderAddress(); // mike.ehrmantraut@gmail.com
$defaultSettingsProvider->getSenderName(); // Output will be Mike Ehrmantraut

EmailProvider

The EmailProvider allows you to get specific email from storage.

<?php

use Sylius\Component\Mailer\Provider\EmailProvider;
use Sylius\Component\Resource\Repository\InMemoryRepository;

$inMemoryRepository = new InMemoryRepository();

$configuration = array(
'christmas_party_invitation' => array(

'subject' => 'Christmas party',
'template' => 'email.html.twig',
'enabled' => true,
'sender' => array(

'name' => 'John',
'address' => 'john.doe@gmail.com',

),
),

);

$emailProvider = new EmailProvider($inMemoryRepository, $configuration);

$email = $emailProvider->getEmail('christmas_party_invitation'); // This method will
→˓search for an email in your storage or in given configuration.

$email->getCode(); // Output will be christmas_party_invitation.
$email->getSenderAddress(); // Output will be john.doe@gmail.com.
$email->getSenderName(); // Output will be John.

Models

9.1. Components & Bundles 709

http://api.sylius.com/Sylius/Component/Mailer/Renderer/RenderedEmail.html


Sylius

Email

Email object represents an email. Email has the following properties:

Property Description
id Unique id of the email
code Code of the email
enabled Indicates whether email is available
subject Subject of the email message
content Content of the email message
template Template of the email
senderName Name of a sender
senderAddress Address of a sender
createdAt Date when the email was created
updatedAt Date of last change

Note: This model implements the EmailInterface For more detailed information go to Sylius API Email.

Interfaces

Model Interfaces

EmailInterface

This interface should be implemented by model representing a single type of Email.

Note: This interface extends CodeAwareInterface and TimestampableInterface.

For more detailed information go to Sylius API EmailInterface.

Service Interfaces

DefaultSettingsProviderInterface

This interface provides methods for retrieving default sender name nad address.

Note: For more detailed information go to Sylius API DefaultSettingsProviderInterface.

EmailProviderInterface

This interface provides methods for retrieving an email from storage.

Note: For more detailed information go to Sylius API EmailProviderInterface.

710 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Mailer/Model/Email.html
http://api.sylius.com/Sylius/Component/Mailer/Model/EmailInterface.html
http://api.sylius.com/Sylius/Component/Mailer/Provider/DefaultSettingsProviderInterface.html
http://api.sylius.com/Sylius/Component/Mailer/Provider/EmailProviderInterface.html


Sylius

Sender

The Sender it is way of sending emails

AdapterInterface

This interface provides methods for sending an email. This is an abstraction layer to provide flexibility of mailer
component. The Adapter is injected into sender thanks to this you are free to inject your own logic of sending an
email, one thing you should do is just implement this interface.

SenderInterface

This interface provides methods for sending an email.

Renderer

AdapterInterface

This interface provides methods for rendering an email. The Adapter is inject into sender for rendering email’s content.

Learn more

• Emails in the Sylius platform - concept documentation

Order

E-Commerce PHP library for creating and managing sales orders.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/order on Packagist);

• Use the official Git repository (https://github.com/Sylius/Order).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

Order

Every order has 2 main identifiers, an ID and a human-friendly number. You can access those by calling
->getId() and ->getNumber() respectively. The number is mutable, so you can change it by calling
->setNumber('E001') on the order instance.

9.1. Components & Bundles 711

https://packagist.org/packages/sylius/order
https://github.com/Sylius/Order


Sylius

Order Totals

Note: All money amounts in Sylius are represented as “cents” - integers. An order has 3 basic totals, which are all
persisted together with the order. The first total is the items total, it is calculated as the sum of all item totals. The
second total is the adjustments total, you can read more about this in next chapter.

<?php

echo $order->getItemsTotal(); //Output will be 1900.
echo $order->getAdjustmentsTotal(); //Output will be -250.

$order->calculateTotal();
echo $order->getTotal(); //Output will be 1650.

The main order total is a sum of the previously mentioned values. You can access the order total value using the
->getTotal() method.

Recalculation of totals can happen by calling ->calculateTotal() method, using the simplest math. It will also
update the item totals.

Items Management

The collection of items (Implementing the Doctrine\Common\Collections\Collection interface) can be
obtained using the ->getItems(). To add or remove items, you can simply use the addItem and removeItem
methods.

<?php

use Sylius\Component\Order\Model\Order;
use Sylius\Component\Order\Model\OrderItem;

$order = new Order();

$item1 = new OrderItem();
$item1->setName('Super cool product');
$item1->setUnitPrice(1999); // 19.99!
$item1->setQuantity(2);

$item2 = new OrderItem();
$item2->setName('Interesting t-shirt');
$item2->setUnitPrice(2549); // 25.49!

$order->addItem($item1);
$order->addItem($item2);
$order->removeItem($item1);

Order Item

An order item model has only the id property as identifier and it has the order reference, accessible via
->getOrder() method.

712 Chapter 9. Components & Bundles



Sylius

Order Item totals

Just like for the order, the total is available via the same method, but the unit price is accessible using the
->getUnitPrice() Each item also can calculate its total, using the quantity (->getQuantity()) and the
unit price.

<?php

use Sylius\Component\Order\Model\OrderItem;

$item = new OrderItem();
$item->setUnitPrice(2000);
$item->setQuantity(4);
$item->calculateTotal();

$item->getTotal(); //Output will be 8000.

Applying adjustments to OrderItem

An OrderItem can also hold adjustments.

<?php

use Sylius\Component\Order\Model\OrderItem;
use Sylius\Component\Order\Model\Adjustment;

$adjustment = new Adjustment();
$adjustment->setAmount(1200);
$adjustment->setType('tax');

$item = new OrderItem();
$item->addAdjustment($adjustment);
$item->setUnitPrice(2000);
$item->setQuantity(2);
$item->calculateTotal();

$item->getTotal(); //Output will be 5200.

Adjustments

Neutral Adjustments

In some cases, you may want to use Adjustment just for displaying purposes. For example, when your order items
have the tax already included in the price.

Every Adjustment instance has the neutral property, which indicates if it should be counted against object total.

<?php

use Sylius\Component\Order\Order;
use Sylius\Component\Order\OrderItem;
use Sylius\Component\Order\Adjustment;

(continues on next page)

9.1. Components & Bundles 713



Sylius

(continued from previous page)

$order = new Order();
$tshirt = new OrderItem();
$tshirt->setUnitPrice(4999);

$shippingFees = new Adjustment();
$shippingFees->setAmount(1000);

$tax = new Adjustment();
$tax->setAmount(1150);
$tax->setNeutral(true);

$order->addItem($tshirt);
$order->addAdjustment($shippingFees);
$order->addAdjustment($tax);

$order->calculateTotal();
$order->getTotal(); // Output will be 5999.

Negative Adjustments

Adjustments can also have negative amounts, which means that they will decrease the order total by certain amount.
Let’s add a 5$ discount to the previous example.

<?php

use Sylius\Component\Order\Order;
use Sylius\Component\Order\OrderItem;
use Sylius\Component\Order\Adjustment;

$order = new Order();
$tshirt = new OrderItem();
$tshirt->setUnitPrice(4999);

$shippingFees = new Adjustment();
$shippingFees->setAmount(1000);

$tax = new Adjustment();
$tax->setAmount(1150);
$tax->setNeutral(true);

$discount = new Adjustment();
$discount->setAmount(-500);

$order->addItem($tshirt);
$order->addAdjustment($shippingFees);
$order->addAdjustment($tax);
$order->addAdjustment($discount);
$order->calculateTotal();
$order->getTotal(); // Output will be 5499.

Locked Adjustments

You can also lock an adjustment, this will ensure that it won’t be deleted from order or order item.

714 Chapter 9. Components & Bundles



Sylius

<?php

use Sylius\Component\Order\Order;
use Sylius\Component\Order\OrderItem;
use Sylius\Component\Order\Adjustment;

$order = new Order();
$tshirt = new OrderItem();
$tshirt->setUnitPrice(4999);

$shippingFees = new Adjustment();
$shippingFees->setAmount(1000);
$shippingFees->lock();

$discount = new Adjustment();
$discount->setAmount(-500);

$order->addItem($tshirt);
$order->addAdjustment($shippingFees);
$order->addAdjustment($discount);
$order->removeAdjustment($shippingFees);
$order->calculateTotal();
$order->getTotal(); // Output will be 5499.

Models

Order

Order object represents order. Orders have the following properties:

Property Description
id Unique id of the order
checkoutCompletedAt The time at which checkout was completed
number Number is human-friendly identifier
notes Additional information about order
items Collection of items
itemsTotal Total value of items in order (default 0)
adjustments Collection of adjustments
adjustmentsTotal Total value of adjustments (default 0)
total Calculated total (items + adjustments)
state State of the order (e.g. “cart”, “pending”)
createdAt Date when order was created
updatedAt Date of last change

Note: This model implements the OrderInterface For more detailed information go to Sylius API Order.

OrderItem

OrderItem object represents items in order. OrderItems have the following properties:

9.1. Components & Bundles 715

http://api.sylius.com/Sylius/Component/Order/Model/Order.html


Sylius

Property Description
id Unique id of the orderItem
order Reference to Order
quantity Items quantity
unitPrice The price of a single unit
adjustments Collection of adjustments
adjustmentsTotal Total of the adjustments in orderItem
total Total of the orderItem (unitPrice * quantity + adjustmentsTotal)
immutable Boolean flag of immutability

Note: This model implements the OrderItemInterface For more detailed information go to Sylius API OrderItem.

OrderItemUnit

OrderItemUnit object represents every single unit of order (for example OrderItem with quantity 5 should have 5
units). OrderItemUnits have the following properties:

Property Description
id Unique id of the orderItem
total Total of the orderItemUnit (orderItem unitPrice + adjustmentsTotal)
orderItem Reference to OrderItem
adjustments Collection of adjustments
adjustmentsTotal Total of the adjustments in orderItem

Note: This model implements the OrderItemUnitInterface For more detailed information go to Sylius API OrderIte-
mUnit.

Adjustment

Adjustment object represents an adjustment to the order’s or order item’s total. Their amount can be positive (charges
- taxes, shipping fees etc.) or negative (discounts etc.). Adjustments have the following properties:

Property Description
id Unique id of the adjustment
order Reference to Order
orderItem Reference to OrderItem
orderItemUnit Reference to OrderItemUnit
type Type of the adjustment (e.g. “tax”)
label e.g. “Clothing Tax 9%”
amount Adjustment amount
neutral Boolean flag of neutrality
locked Adjustment lock (prevent from deletion)
originId Origin id of the adjustment
originType Origin type of the adjustment
createdAt Date when adjustment was created
updatedAt Date of last change

716 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Order/Model/OrderItem.html
http://api.sylius.com/Sylius/Component/Order/Model/OrderItem.html
http://api.sylius.com/Sylius/Component/Order/Model/OrderItem.html


Sylius

Note: This model implements the AdjustmentInterface For more detailed information go to Sylius API Adjustment.

Interfaces

Model Interfaces

OrderInterface

This interface should be implemented by model representing a single Order.

Hint: It also contains the default State Machine.

Note: This interface extends TimestampableInterface, TimestampableInterface, AdjustableInterface and Com-
mentAwareInterface

For more detailed information go to Sylius API OrderInterface.

OrderAwareInterface

This interface provides basic operations for order management. If you want to have orders in your model just imple-
ment this interface.

Note: For more detailed information go to Sylius API OrderAwareInterface.

OrderItemInterface

This interface should be implemented by model representing a single OrderItem.

Note: This interface extends the OrderAwareInterface and the AdjustableInterface,

For more detailed information go to Sylius API OrderItemInterface.

OrderItemUnitInterface

This interface should be implemented by model representing a single OrderItemUnit.

Note: This interface extends the AdjustableInterface,

For more detailed information go to Sylius API OrderItemUnitInterface.

9.1. Components & Bundles 717

http://api.sylius.com/Sylius/Component/Order/Model/Adjustment.html
http://api.sylius.com/Sylius/Component/Order/Model/OrderInterface.html
http://api.sylius.com/Sylius/Component/Order/Model/OrderAwareInterface.html
http://api.sylius.com/Sylius/Component/Order/Model/OrderItemInterface.html
http://api.sylius.com/Sylius/Component/Order/Model/OrderItemUnitInterface.html


Sylius

AdjustmentInterface

This interface should be implemented by model representing a single Adjustment.

Note: This interface extends the TimestampableInterface.

For more detailed information go to Sylius API AdjustmentInterface.

AdjustableInterface

This interface provides basic operations for adjustment management. Use this interface if you want to make a model
adjustable.

For example following models implement this interface:

• Order

• OrderItem

Note: For more detailed information go to Sylius API AdjustableInterface.

CommentInterface

This interface should be implemented by model representing a single Comment.

Note: This interface extends the TimestampableInterface

For more detailed information go to Sylius API CommentInterface.

CommentAwareInterface

This interface provides basic operations for comments management. If you want to have comments in your model just
implement this interface.

Note: For more detailed information go to Sylius API CommentAwareInterface.

IdentityInterface

This interface should be implemented by model representing a single Identity. It can be used for storing external
identifications.

Note: For more detailed information go to Sylius API IdentityInterface.

718 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Order/Model/AdjustmentInterface.html
http://api.sylius.com/Sylius/Component/Order/Model/AdjustableInterface.html
http://api.sylius.com/Sylius/Component/Order/Model/CommentInterface.html
http://api.sylius.com/Sylius/Component/Order/Model/CommentAwareInterface.html
http://api.sylius.com/Sylius/Component/Order/Model/IdentityInterface.html


Sylius

Services Interfaces

OrderRepositoryInterface

In order to decouple from storage that provides recently completed orders or check if given order’s number is already
used, you should create repository class which implements this interface.

Note: This interface extends the RepositoryInterface.

For more detailed information about the interface go to Sylius API OrderRepositoryInterface.

State Machine

Order States

Sylius itself uses a complex state machine system to manage all states of the business domain. This component has
some sensible default states defined in the OrderInterface.

All new Order instances have the state cart by default, which means they are unconfirmed.

The following states are defined:

Related constant State Description
STATE_CART cart Unconfirmed order, ready to add/remove items
STATE_NEW new Confirmed order
STATE_CANCELLED cancelled Cancelled by customer or manager
STATE_FULFILLED fulfilled Order has been fulfilled

Tip: Please keep in mind that these states are just default, you can define and use your own. If you use this component
with SyliusOrderBundle and Symfony, you will have full state machine configuration at your disposal.

Order Transitions

There are following order’s transitions by default:

Related constant Transition
SYLIUS_CREATE create
SYLIUS_CANCEL cancel
SYLIUS_FULFILL fulfill

There is also the default graph name included:

Related constant Name
GRAPH sylius_order

Note: All of above transitions and the graph are constant fields in the OrderTransitions class.

9.1. Components & Bundles 719

http://api.sylius.com/Sylius/Component/Order/Repository/OrderRepositoryInterface.html


Sylius

Processors

Order processors are responsible for manipulating the orders to apply different predefined adjustments or other modi-
fications based on order state.

OrderProcessorInterface

You can use it when you want to create your own custom processor.

The following code applies 10% discount adjustment to orders above 100C.

<?php

use Sylius\Component\Order\Processor\OrderProcessorInterface;
use Sylius\Component\Order\Model\OrderInterface;
use Sylius\Component\Order\Model\Adjustment;

class DiscountByPriceOrderProcessor implements OrderProcessorInterface
{

public function process(OrderInterface $order)
{

if($order->getTotal() > 10000) {
$discount10Percent = new Adjustment();
$discount10Percent->setAmount(-$order->getTotal() / 100 * 10);
$order->addAdjustment($discount10Percent);

}
}

}

CompositeOrderProcessor

Composite order processor works as a registry of processors, allowing to run multiple processors in priority order.

Learn more

• Carts & Orders in the Sylius platform - concept documentation

Payment

PHP library which provides abstraction of payments management.

It ships with default Payment and PaymentMethod models.

Note: This component does not provide any payment gateway. Integrate it with Payum.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/payment on Packagist);

720 Chapter 9. Components & Bundles

https://github.com/Payum/Payum/
https://packagist.org/packages/sylius/payment


Sylius

• Use the official Git repository (https://github.com/Sylius/Payment).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Models

Payment

Every payment is represented by a Payment instance and has the following properties:

Property Description
id Unique id of the payment
method Payment method associated with this payment
currency Payment’s currency
amount Payment’s amount
state Payment’s state
details Payment’s details
createdAt Date of creation
updatedAt Date of the last update

Note: This model implements the PaymentInterface.

For more detailed information go to Sylius API Payment.

Hint: All default payment states are available in Payment States.

PaymentMethod

Every method of payment is represented by a PaymentMethod instance and has the following properties:

Property Description
id Unique id of the payment method
code Unique code of the payment method
name Payment method’s name
enabled Indicate whether the payment method is enabled
description Payment method’s description
gatewayConfig Payment method’s gateway (and its configuration) to use
position Payment method’s position among other methods
environment Required app environment
createdAt Date of creation
updatedAt Date of the last update

Note: This model implements the PaymentMethodInterface.

For more detailed information go to Sylius API PaymentMethod.

9.1. Components & Bundles 721

https://github.com/Sylius/Payment
http://api.sylius.com/Sylius/Component/Payment/Model/Payment.html
http://api.sylius.com/Sylius/Component/Payment/Model/PaymentMethod.html


Sylius

PaymentMethodTranslation

This model is used to ensure that different locales have the correct representation of the following payment properties:

Property Description
id Unique id of the payment method
name Payment method’s name
description Payment method’s description

Note: This model implements the PaymentMethodTranslationInterface.

For more detailed information go to Sylius API PaymentMethodTranslation.

Interfaces

Model Interfaces

PaymentInterface

This interface should be implemented by any custom model representing a payment. Also it keeps all of the default
Payment States.

Note: This interface extends the CodeAwareInterface and TimestampableInterface.

For more detailed information go to Sylius API PaymentInterface.

PaymentMethodInterface

In order to create a custom payment method class, which could be used by other models or services from this compo-
nent, it needs to implement this interface.

Note: This interface extends the TimestampableInterface and the PaymentMethodTranslationInterface.

For more detailed information go to Sylius API PaymentMethodInterface.

PaymentMethodsAwareInterface

This interface should be implemented by any custom storage used to store representations of the payment method.

Note: For more detailed information go to Sylius API PaymentMethodsAwareInterface.

722 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Payment/Model/PaymentMethodTranslation.html
http://api.sylius.com/Sylius/Component/Payment/Model/PaymentInterface.html
http://api.sylius.com/Sylius/Component/Payment/Model/PaymentMethodInterface.html
http://api.sylius.com/Sylius/Component/Payment/Model/PaymentMethodsAwareInterface.html


Sylius

PaymentMethodTranslationInterface

This interface is needed in creating a custom payment method translation class, which then could be used by the
payment method itself.

Note: For more detailed information go to Sylius API PaymentMethodTranslationInterface.

PaymentSourceInterface

This interface needs to be implemented by any custom payment source.

Note: For more detailed information go to Sylius API PaymentSourceInterface.

PaymentsSubjectInterface

Any container which manages multiple payments should implement this interface.

Note: For more detailed information go to Sylius API PaymentsSubjectInterface.

Service Interfaces

PaymentMethodRepositoryInterface

This interface should be implemented by your custom repository, used to handle payment method objects.

Note: For more detailed information go to Sylius API PaymentMethodRepositoryInterface.

State Machine

Payment States

The following payment states are available by default:

Related constant State Description
STATE_CART cart Initial; Before the subject of payment is completed
STATE_NEW new After completion of the payment subject
STATE_PROCESSING processing Payment which is in process of verification
STATE_COMPLETED completed Completed payment
STATE_FAILED failed Payment has failed
STATE_CANCELLED cancelled Cancelled by a customer or manager
STATE_REFUNDED refunded A completed payment which has been refunded
STATE_UNKNOWN unknown Auxiliary state for handling external states

9.1. Components & Bundles 723

http://api.sylius.com/Sylius/Component/Payment/Model/PaymentMethodTranslationInterface.html
http://api.sylius.com/Sylius/Component/Payment/Model/PaymentSourceInterface.html
http://api.sylius.com/Sylius/Component/Payment/Model/PaymentsSubjectInterface.html
http://api.sylius.com/Sylius/Component/Payment/Repository/PaymentMethodRepositoryInterface.html


Sylius

Note: All the above states are constant fields in the PaymentInterface.

Payment Transitions

The following payment transitions are available by default:

Related constant Transition
SYLIUS_CREATE create
SYLIUS_PROCESS process
SYLIUS_COMPLETE complete
SYLIUS_FAIL fail
SYLIUS_CANCEL cancel
SYLIUS_REFUND refund

There’s also the default graph name included:

Related constant Name
GRAPH sylius_payment

Note: All of above transitions and the graph are constant fields in the PaymentTransitions class.

Learn more

• Payments in the Sylius platform - concept documentation

Product

Powerful products catalog for PHP applications.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/product on Packagist).

• Use the official Git repository (https://github.com/Sylius/Product).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

724 Chapter 9. Components & Bundles

https://packagist.org/packages/sylius/product
https://github.com/Sylius/Product


Sylius

Creating a product

<?php

use Sylius\Component\Product\Model\Product;

$product = new Product();

$product->getCreatedAt(); // Returns the \DateTime when it was created.

Product attributes management

<?php

use Sylius\Component\Product\Model\Attribute;
use Sylius\Component\Product\Model\AttributeValue;
use Doctrine\Common\Collections\ArrayCollection;

$attribute = new Attribute();

$colorGreen = new AttributeValue();
$colorRed = new AttributeValue();

$attributes = new ArrayCollection();

$attribute->setName('Color');

$colorGreen->setValue('Green');
$colorRed->setValue('Red');

$colorGreen->setAttribute($attribute);
$colorRed->setAttribute($attribute);

$product->addAttribute($colorGreen);
$product->hasAttribute($colorGreen); // Returns true.
$product->removeAttribute($colorGreen);

$attributes->add($colorGreen);
$attributes->add($colorRed);
$product->setAttributes($attributes);

$product->hasAttributeByName('Color');
$product->getAttributeByName('Color'); // Returns $colorGreen.

$product->getAttributes(); // Returns $attributes.

Note: Only instances of AttributeValue from the Product component can be used with the Product model.

Hint: The getAttributeByName will only return the first occurrence of AttributeValue assigned to the At-
tribute with specified name, the rest will be omitted.

9.1. Components & Bundles 725



Sylius

Product variants management

<?php

use Sylius\Component\Product\Model\Variant;

$variant = new Variant();
$availableVariant = new Variant();

$variants = new ArrayCollection();

$availableVariant->setAvailableOn(new \DateTime());

$product->hasVariants(); // return false

$product->addVariant($variant);
$product->hasVariant($variant); // returns true
$product->hasVariants(); // returns true
$product->removeVariant($variant);

$variants->add($variant);
$variants->add($availableVariant);

$product->setVariants($variants);

$product->getVariants(); // Returns an array containing $variant and
→˓$availableVariant.

Note: Only instances of Variant from the Product component can be used with the Product model.

Product options management

<?php

use Sylius\Component\Product\Model\Option;

$firstOption = new Option();
$secondOption = new Option();

$options = new ArrayCollection();

$product->addOption($firstOption);
$product->hasOption($firstOption); // Returns true.
$product->removeOption($firstOption);

$options->add($firstOption);
$options->add($secondOption);

$product->setOptions($options);
$product->hasOptions(); // Returns true.
$product->getOptions(); // Returns an array containing all inserted options.

726 Chapter 9. Components & Bundles



Sylius

Models

Product

The Product model represents every unique product in the catalog. By default it contains the following properties:

Property Description
id Unique id of the product
name Product’s name taken from the ProductTranslation
slug Product’s urlized name taken from the ProductTranslation
description Product’s description taken from the ProductTranslation
metaKeywords Product’s meta keywords taken from the ProductTranslation
metaDescription Product’s meta description taken from the ProductTranslation
attributes Attributes assigned to this product
variants Variants assigned to this product
options Options assigned to this product
createdAt Product’s date of creation
updatedAt Product’s date of update

Note: This model uses the Using TranslatableTrait and implements the ProductInterface.

For more detailed information go to Sylius API Product.

ProductTranslation

This model is responsible for keeping a translation of product’s simple properties according to given locale. By default
it has the following properties:

Property Description
id Unique id of the product translation

Note: This model extends the Implementing AbstractTranslation class and implements the ProductTranslationInter-
face.

For more detailed information go to Sylius API ProductTranslation.

AttributeValue

This AttributeValue extension ensures that it’s subject is an instance of the ProductInterface.

Note: This model extends the AttributeValue and implements the AttributeValueInterface.

For more detailed information go to Sylius API AttributeValue.

9.1. Components & Bundles 727

http://api.sylius.com/Sylius/Component/Product/Model/Product.html
http://api.sylius.com/Sylius/Component/Product/Model/ProductTranslation.html
http://api.sylius.com/Sylius/Component/Product/Model/AttributeValue.html


Sylius

Variant

This Variant extension ensures that it’s object is an instance of the ProductInterface and provides an additional
property:

Property Description
availableOn The date indicating when a product variant is available

Note: This model implements the ProductVariantInterface.

For more detailed information go to Sylius API Variant.

Interfaces

Model Interfaces

ProductInterface

This interface should be implemented by models characterizing a product.

Note: This interface extends SlugAwareInterface, TimestampableInterface and ProductTranslationInterface.

For more information go to Sylius API ProductInterface.

ProductTranslationInterface

This interface should be implemented by models used for storing a single translation of product fields.

Note: This interface extends the SlugAwareInterface.

For more information go to Sylius API ProductTranslationInterface.

AttributeValueInterface

This interfaces should be implemented by models used to bind an attribute and a value to a specific product.

Note: This interface extends the AttributeValueInterface.

For more information go to Sylius API AttributeValueInterface.

ProductVariantInterface

This interface should be implemented by models binding a product with a specific combination of attributes.

728 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Product/Model/Variant.html
http://api.sylius.com/Sylius/Component/Product/Model/ProductInterface.html
http://api.sylius.com/Sylius/Component/Product/Model/ProductTranslationInterface.html
http://api.sylius.com/Sylius/Component/Product/Model/AttributeValueInterface.html


Sylius

Learn more

• Products in the Sylius platform - concept documentation

Promotion

Super-flexible promotions system with support of complex rules and actions. Coupon codes included!

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/promotion on Packagist);

• Use the official Git repository (https://github.com/Sylius/Promotion).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

In order to benefit from the component’s features at first you need to create a basic class that will implement the
PromotionSubjectInterface. Let’s assume that you would like to have a system that applies promotions on Tickets.
Your Ticket class therefore will implement the CountablePromotionSubjectInterface to give you an ability to count
the subjects for promotion application purposes.

<?php

namespace AppBundle\Entity;

use Doctrine\Common\Collections\Collection;
use Doctrine\Common\Collections\ArrayCollection;
use Sylius\Component\Promotion\Model\CountablePromotionSubjectInterface;
use Sylius\Component\Promotion\Model\PromotionSubjectInterface;
use Sylius\Component\Promotion\Model\PromotionInterface;

class Ticket implements CountablePromotionSubjectInterface
{

/**
* @var int

*/
private $quantity;

/**
* @var Collection

*/
private $promotions;

/**
* @var int

*/
private $unitPrice;

public function __construct()

(continues on next page)

9.1. Components & Bundles 729

https://packagist.org/packages/sylius/promotion
https://github.com/Sylius/Promotion


Sylius

(continued from previous page)

{
$this->promotions = new ArrayCollection();

}
/**
* @return int

*/
public function getQuantity()
{

return $this->quantity;
}

/**
* @param int $quantity

*/
public function setQuantity($quantity)
{

$this->quantity = $quantity;
}

/**
* {@inheritdoc}

*/
public function getPromotions()
{

return $this->promotions;
}

/**
* {@inheritdoc}

*/
public function hasPromotion(PromotionInterface $promotion)
{

return $this->promotions->contains($promotion);
}

/**
* {@inheritdoc}

*/
public function getPromotionSubjectTotal()
{

//implementation
}

/**
* {@inheritdoc}

*/
public function addPromotion(PromotionInterface $promotion)
{

if (!$this->hasPromotion($promotion)) {
$this->promotions->add($promotion);

}
}

/**
* {@inheritdoc}

*/
public function removePromotion(PromotionInterface $promotion)

(continues on next page)

730 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

{
if($this->hasPromotion($promotion))
{

$this->promotions->removeElement($promotion);
}

}

/**
* {@inheritdoc}

*/
public function getPromotionSubjectCount()
{

return $this->getQuantity();
}

/**
* @return int

*/
public function getUnitPrice()
{

return $this->unitPrice;
}

/**
* @param int $price

*/
public function setUnitPrice($price)
{

$this->unitPrice = $price;
}

/**
* @return int

*/
public function getTotal()
{

return $this->getUnitPrice() * $this->getQuantity();
}

}

PromotionProcessor

The component provides us with a PromotionProcessor which checks all rules of a subject and applies configured
actions if rules are eligible.

<?php

use Sylius\Component\Promotion\Processor\PromotionProcessor;
use AppBundle\Entity\Ticket;

/**
* @param PromotionRepositoryInterface $repository

* @param PromotionEligibilityCheckerInterface $checker

* @param PromotionApplicatorInterface $applicator

*/
(continues on next page)

9.1. Components & Bundles 731



Sylius

(continued from previous page)

$processor = new PromotionProcessor($repository, $checker, $applicator);

$subject = new Ticket();

$processor->process($subject);

Note: It implements the PromotionProcessorInterface.

CompositePromotionEligibilityChecker

The Promotion component provides us with a delegating service - the CompositePromotionEligibilityChecker that
checks if the promotion rules are eligible for a given subject. Below you can see how it works:

Warning: Remember! That before you start using rule checkers you need to have two Registries - rule checker
registry and promotion action registry. In these you have to register your rule checkers and promotion actions. You
will also need working services - ‘item_count’ rule checker service for our example:

<?php

use Sylius\Component\Promotion\Model\Promotion;
use Sylius\Component\Promotion\Model\PromotionAction;
use Sylius\Component\Promotion\Model\PromotionRule;
use Sylius\Component\Promotion\Checker\CompositePromotionEligibilityChecker;
use AppBundle\Entity\Ticket;

$checkerRegistry = new ServiceRegistry(
→˓'Sylius\Component\Promotion\Checker\RuleCheckerInterface');
$actionRegistry = new ServiceRegistry(
→˓'Sylius\Component\Promotion\Model\PromotionActionInterface');
$ruleRegistry = new ServiceRegistry(
→˓'Sylius\Component\Promotion\Model\PromotionRuleInterface');

$dispatcher = new EventDispatcher();

/**
* @param ServiceRegistryInterface $registry

* @param EventDispatcherInterface $dispatcher

*/
$checker = new CompositePromotionEligibilityChecker($checkerRegistry, $dispatcher);

$itemCountChecker = new ItemCountRuleChecker();
$checkerRegistry->register('item_count', $itemCountChecker);

// Let's create a new promotion
$promotion = new Promotion();
$promotion->setName('Test');

// And a new action for that promotion, that will give a fixed discount of 10
$action = new PromotionAction();
$action->setType('fixed_discount');

(continues on next page)

732 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

$action->setConfiguration(array('amount' => 10));
$action->setPromotion($promotion);

$actionRegistry->register('fixed_discount', $action);

// That promotion will also have a rule - works for item amounts over 2
$rule = new PromotionRule();
$rule->setType('item_count');

$configuration = array('count' => 2);
$rule->setConfiguration($configuration);

$ruleRegistry->register('item_count', $rule);

$promotion->addRule($rule);

// Now we need an object that implements the PromotionSubjectInterface
// so we will use our custom Ticket class.
$subject = new Ticket();

$subject->addPromotion($promotion);
$subject->setQuantity(3);
$subject->setUnitPrice(10);

$checker->isEligible($subject, $promotion); // Returns true

Note: It implements the PromotionEligibilityCheckerInterface.

PromotionApplicator

In order to automate the process of promotion application the component provides us with a Promotion Applicator,
which is able to apply and revert single promotions on a subject implementing the PromotionSubjectInterface.

<?php

use Sylius\Component\Promotion\PromotionAction\PromotionApplicator;
use Sylius\Component\Promotion\Model\Promotion;
use Sylius\Component\Registry\ServiceRegistry;
use AppBundle\Entity\Ticket;

// In order for the applicator to work properly you need to have your actions created
→˓and registered before.
$registry = new ServiceRegistry(
→˓'Sylius\Component\Promotion\Model\PromotionActionInterface');
$promotionApplicator = new PromotionApplicator($registry);

$promotion = new Promotion();

$subject = new Ticket();
$subject->addPromotion($promotion);

$promotionApplicator->apply($subject, $promotion);

(continues on next page)

9.1. Components & Bundles 733



Sylius

(continued from previous page)

$promotionApplicator->revert($subject, $promotion);

Note: It implements the PromotionApplicatorInterface.

PromotionCouponGenerator

In order to automate the process of coupon generation the component provides us with a Coupon Generator.

<?php

use Sylius\Component\Promotion\Model\Promotion;
use Sylius\Component\Promotion\Generator\PromotionCouponGeneratorInstruction;
use Sylius\Component\Promotion\Generator\PromotionCouponGenerator;

$promotion = new Promotion();

$instruction = new PromotionCouponGeneratorInstruction(); // $amount = 5 by default

/**
* @param RepositoryInterface $repository

* @param EntityManagerInterface $manager

*/
$generator = new PromotionCouponGenerator($repository, $manager);

//This will generate and persist 5 coupons into the database
//basing on the instruction provided for the given promotion object
$generator->generate($promotion, $instruction);

// We can also generate one unique code, and assign it to a new Coupon.
$code = $generator->generateUniqueCode();
$coupon = new Coupon();
$coupon->setCode($code);

Checkers

ItemCountRuleChecker

You can use it when your subject implements the CountablePromotionSubjectInterface:

<?php

$itemCountChecker = new ItemCountRuleChecker();
// a Subject that implements the CountablePromotionSubjectInterface
$subject->setQuantity(3);

$configuration = array('count' => 2);

$itemCountChecker->isEligible($subject, $configuration); // returns true

734 Chapter 9. Components & Bundles



Sylius

ItemTotalRuleChecker

If your subject implements the PromotionSubjectInterface you can use it with this checker.

<?php

$itemTotalChecker = new ItemTotalRuleChecker();

// a Subject that implements the PromotionSubjectInterface
// Let's assume the subject->getSubjectItemTotal() returns 199

$configuration = array('amount' => 199);

$itemTotalChecker->isEligible($subject, $configuration); // returns true

Models

Promotion

The promotion is represented by a Promotion instance. It has the following properties as default:

Property Description
id Unique id of the promotion
code Unique code of the promotion
name Promotion’s name
description Promotion’s description
priority When exclusive, promotion with top priority will be applied
exclusive Cannot be applied together with other promotions
usageLimit Promotion’s usage limit
used Number of times this coupon has been used
startsAt Start date
endsAt End date
couponBased Whether this promotion is triggered by a coupon
coupons Associated coupons
rules Associated rules
actions Associated actions
createdAt Date of creation
updatedAt Date of update

Note: This model implements the PromotionInterface .

Coupon

The coupon is represented by a Coupon instance. It has the following properties as default:

9.1. Components & Bundles 735



Sylius

Property Description
id Unique id of the coupon
code Coupon’s code
usageLimit Coupon’s usage limit
used Number of times the coupon has been used
promotion Associated promotion
expiresAt Expiration date
createdAt Date of creation
updatedAt Date of update

Note: This model implements the CouponInterface.

PromotionRule

The promotion rule is represented by a PromotionRule instance. PromotionRule is a requirement that has to be
satisfied by the promotion subject. It has the following properties as default:

Property Description
id Unique id of the coupon
type Rule’s type
configuration Rule’s configuration
promotion Associated promotion

Note: This model implements the PromotionRuleInterface.

PromotionAction

The promotion action is represented by an PromotionAction instance. PromotionAction takes place if the rules of a
promotion are satisfied. It has the following properties as default:

Property Description
id Unique id of the action
type Rule’s type
configuration Rule’s configuration
promotion Associated promotion

Note: This model implements the PromotionActionInterface.

Interfaces

Model Interfaces

736 Chapter 9. Components & Bundles



Sylius

PromotionSubjectInterface

To characterize an object with attributes and options from a promotion, the object class needs to implement the Pro-
motionSubjectInterface.

Note: You will find more information about this interface in Sylius API PromotionSubjectInterface.

PromotionInterface

This interface should be implemented by models representing a Promotion.

Note: This interface extends the CodeAwareInterface and TimestampableInterface.

You will find more information about this interface in Sylius API PromotionInterface.

PromotionActionInterface

This interface should be implemented by models representing an PromotionAction.

An PromotionActionInterface has two defined types by default:

Related constant Type
TYPE_FIXED_DISCOUNT fixed_discount
TYPE_PERCENTAGE_DISCOUNT percentage_discount

Note: You will find more information about this interface in Sylius API PromotionActionInterface.

CouponInterface

This interface should be implemented by models representing a Coupon.

Note: This interface extends the CodeAwareInterface and the TimestampableInterface.

You will find more information about this interface in Sylius API CouponInterface.

PromotionRuleInterface

This interface should be implemented by models representing a PromotionRule.

A PromotionRuleInterface has two defined types by default:

Related constant Type
TYPE_ITEM_TOTAL item_total
TYPE_ITEM_COUNT item_count

9.1. Components & Bundles 737

http://api.sylius.com/Sylius/Component/Promotion/Model/PromotionSubjectInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Model/PromotionInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Model/PromotionActionInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Model/CouponInterface.html


Sylius

Note: You will find more information about this interface in Sylius API PromotionRuleInterface.

CountablePromotionSubjectInterface

To be able to count the object’s promotion subjects, the object class needs to implement the
CountablePromotionSubjectInterface.

Note: This interface extends the PromotionSubjectInterface.

You will find more information about this interface in Sylius API CountablePromotionSubjectInterface.

PromotionCouponAwarePromotionSubjectInterface

To make the object able to get its associated coupon, the object class needs to implement the
PromotionCouponAwarePromotionSubjectInterface.

Note: This interface extends the PromotionSubjectInterface.

You will find more information about this interface in Sylius API PromotionCouponAwarePromotionSubjectInterface.

PromotionCouponsAwareSubjectInterface

To make the object able to get its associated coupons collection, the object class needs to implement the
PromotionCouponsAwareSubjectInterface.

Note: This interface extends the PromotionSubjectInterface.

You will find more information about this interface in Sylius API PromotionCouponsAwareSubjectInterface.

Services Interfaces

PromotionEligibilityCheckerInterface

Services responsible for checking the promotions eligibility on the promotion subjects should implement this interface.

Note: You will find more information about this interface in Sylius API PromotionEligibilityCheckerInterface.

RuleCheckerInterface

Services responsible for checking the rules eligibility should implement this interface.

738 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Promotion/Model/PromotionRuleInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Model/CountablePromotionSubjectInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Model/PromotionCouponAwarePromotionSubjectInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Model/PromotionCouponsAwareSubjectInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Checker/PromotionEligibilityCheckerInterface.html


Sylius

Note: You will find more information about this interface in Sylius API RuleCheckerInterface.

PromotionApplicatorInterface

Service responsible for applying promotions in your system should implement this interface.

Note: You will find more information about this interface in Sylius API PromotionApplicatorInterface.

PromotionProcessorInterface

Service responsible for checking all rules and applying configured actions if rules are eligible in your system should
implement this interface.

Note: You will find more information about this interface in Sylius API PromotionProcessorInterface.

PromotionRepositoryInterface

In order to be able to find active promotions in your system you should create a repository class which implements
this interface.

Note: This interface extends the RepositoryInterface.

For more detailed information about this interface go to Sylius API PromotionRepositoryInterface.

PromotionCouponGeneratorInterface

In order to automate the process of coupon generation your system needs to have a service that will implement this
interface.

Note: For more detailed information about this interface go to Sylius API PromotionCouponGeneratorInterface.

PromotionActionCommandInterface

This interface should be implemented by services that execute actions on the promotion subjects.

Note: You will find more information about this interface in Sylius API PromotionActionCommandInterface.

9.1. Components & Bundles 739

http://api.sylius.com/Sylius/Component/Promotion/Checker/RuleCheckerInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Action/PromotionApplicatorInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Processor/PromotionProcessorInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Repository/PromotionRepositoryInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Generator/PromotionCouponGeneratorInterface.html
http://api.sylius.com/Sylius/Component/Promotion/Action/PromotionActionCommandInterface.html


Sylius

Learn more

• Promotions in the Sylius platform - concept documentation

Registry

Simple registry component useful for all types of applications.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/registry on Packagist);

• Use the official Git repository (https://github.com/Sylius/Registry).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

A registry object acts as a collection of objects. The sylius ServiceRegistry allows you to store objects which imple-
ment a specific interface.

ServiceRegistry

To create a new ServiceRegistry you need to determine what kind of interface should be kept inside.

For the sake of examples lets use the RuleCheckerInterface from the Promotion component.

<?php

use Sylius\Component\Registry\ServiceRegistry;

$registry = new ServiceRegistry(
→˓'Sylius\Component\Promotion\Checker\RuleCheckerInterface');

Once you’ve done that you can manage any object with the corresponding interface.

So for starters, lets add some services:

<?php

use Sylius\Component\Promotion\Checker\Rule\ItemTotalRuleChecker;
use Sylius\Component\Promotion\Checker\Rule\CartQuantityRuleChecker;

$registry->register('item_total', new ItemTotalRuleChecker());
$registry->register('cart_quantity', new CartQuantityRuleChecker());

Hint: The first parameter of register is incredibly important, as we will use it for all further operations. Also it’s
the key at which our service is stored in the array returned by all method.

After specifying the interface and inserting services, we can manage them:

740 Chapter 9. Components & Bundles

https://packagist.org/packages/sylius/registry
https://github.com/Sylius/Registry


Sylius

<?php

$registry->has('item_total'); // returns true

$registry->get('item_total'); // returns the ItemTotalRuleChecker we inserted earlier
→˓on

$registry->all(); // returns an array containing both rule checkers

Removing a service from the registry is as easy as adding:

<?php

$registry->unregister('item_total');

$registry->has('item_total'); // now returns false

Note: This service implements the ServiceRegistryInterface.

Caution: This service throws:

• \InvalidArgumentException when you try to register a service which doesn’t implement the specified
interface

• ExistingServiceException

• NonExistingServiceException

Interfaces

ServiceRegistryInterface

This interface should be implemented by a service responsible for managing various services.

Note: For more detailed information go to Sylius API ServiceRegistryInterface.

Exceptions

ExistingServiceException

This exception is thrown when you try to register a service that is already in the registry.

Note: This exception extends the \InvalidArgumentException.

9.1. Components & Bundles 741

http://php.net/manual/en/class.invalidargumentexception.php
http://api.sylius.com/Sylius/Component/Registry/ServiceRegistryInterface.html
http://php.net/manual/en/class.invalidargumentexception.php


Sylius

NonExistingServiceException

This exception is thrown when you try to unregister a service which is not in the registry.

Note: This exception extends the \InvalidArgumentException.

Resource

Domain management abstraction for PHP. It provides interface for most common operations on the application re-
sources.

Installation

We assume you’re familiar with Composer, a dependency manager for PHP. Use following command to add the
component to your composer.json and download package.

If you have Composer installed globally.

$ composer require sylius/resource

Otherwise you have to download .phar file.

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar require sylius/resource

Model interfaces

ResourceInterface

This primary interface marks the model as a resource and will ask you to implement the following methods to your
model:

Method Description Returned value
getId() Get identifier mixed

TimestampableInterface

This interface will ask you to implement the following methods to your model, they will use by the timestampable
Doctrine2 extension.

Method Description Returned value
getCreatedAt() Get creation time DateTime
setCreatedAt(DateTime $createdAt) Set creation time void
getUpdatedAt() Get the time of last update DateTime
setUpdatedAt(DateTime $updatedAt) Set the time of last update void

742 Chapter 9. Components & Bundles

http://php.net/manual/en/class.invalidargumentexception.php
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally
https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/timestampable.md
https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/timestampable.md


Sylius

ToggleableInterface

This interface can be applied to every toggleable model and will ask you to implement the following methods to your
model:

Method Description Returned value
isEnabled() Return current status bool
enable() Set as enabled void
disable() Set as disabled void
setEnabled(bool $enabled) Set current status void

CodeAwareInterface

This interface can be applied to every code aware model and will ask you to implement the following methods to your
model:

Method Description Returned value
getCode() Get code string
setCode(string $code) Set code void

SlugAwareInterface

This interface is used by sluggable Doctrine2 extension and will ask you to implement the following methods to your
model:

Method Description Returned value
getSlug() Get slug string
setSlug(string $slug = null) Set slug void

TranslatableInterface

This interface should be implemented by a model used in more than one language.

Hint: Although you can implement this interface in your class, it’s easier to just use the Using TranslatableTrait
class.

Note: For more detailed information go to Sylius API TranslatableInterface.

TranslationInterface

This interface should be implemented by a model responsible for keeping a single translation.

9.1. Components & Bundles 743

https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/sluggable.md
http://api.sylius.com/Sylius/Component/Resource/Model/TranslatableInterface.html


Sylius

Hint: And as above, although you are completely free to create your own class implementing this interface, it’s
already implemented in the Implementing AbstractTranslation class.

Note: For more detailed information go to Sylius API TranslationInterface.

Factory Interface

FactoryInterface

Interface implemented by all Factory services for Resources. To learn more go to Creating Resources.

Method Description
createNew() Create a new instance of your resource

Repository Interfaces

RepositoryInterface

This interface should be implemented by every Resource Repository service.

Method Description
createPaginator(array $criteria = null, array $orderBy = null) Get paginated collection of your resources

Service interfaces

LocaleProviderInterface

This interface should be implemented by a service responsible for managing locales.

Note: For more detailed information go to Sylius API LocaleProviderInterface.

TranslatableRepositoryInterface

This interface should be implemented by a repository responsible for keeping the LocaleProvider and an array of
fields

This interface expects you to implement a way of setting an instance of LocaleProviderInterface, and an array of
translatable fields into your custom repository.

Note: This interface extends the RepositoryInterface.

For more detailed information go to Sylius API TranslatableResourceRepositoryInterface.

744 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Resource/Model/TranslationInterface.html
http://api.sylius.com/Sylius/Component/Resource/Provider/LocaleProviderInterface.html
http://api.sylius.com/Sylius/Component/Resource/Repository/TranslatableRepositoryInterface.html


Sylius

Translations

Implementing AbstractTranslation

First let’s create a class which will keep our translatable properties:

<?php

namespace Example\Model;

use Sylius\Component\Resource\Model\AbstractTranslation;

class BookTranslation extends AbstractTranslation
{

/**
* @var string

*/
private $title;

/**
* @return string

*/
public function getTitle()
{

return $this->title;
}

/**
* @param string $title

*/
public function setTitle($title)
{

$this->title = $title;
}

}

Using TranslatableTrait

Now the following class will be actually capable of translating the title:

<?php

namespace Example\Model;

use Sylius\Component\Resource\Model\TranslatableInterface;
use Sylius\Component\Resource\Model\TranslatableTrait;

class Book implements TranslatableInterface
{

use TranslatableTrait;

/**
* @return string

*/
public function getTitle()

(continues on next page)

9.1. Components & Bundles 745



Sylius

(continued from previous page)

{
return $this->getTranslation()->getTitle();

}

/**
* @param string $title

*/
public function setTitle($title)
{

$this->getTranslation()->setTitle($title);
}

}

Note: As you could notice, inside both methods we use the getTranslation method. More specified explanation
on what it does is described further on.

Using Translations

Once we have both classes implemented we can start translating. So first we need to create a few instances of our
translation class:

<?php

use Example\Model\Book;
use Example\Model\BookTranslation;

$englishBook = new BookTranslation();
$englishBook->setLocale('en');
$englishBook->setTitle("Harry Potter and the Philosopher's Stone");
// now we have a title set for the english locale

$spanishBook = new BookTranslation();
$spanishBook->setLocale('es');
$spanishBook->setTitle('Harry Potter y la Piedra Filosofal');
// spanish

$germanBook = new BookTranslation();
$germanBook->setLocale('de');
$germanBook->setTitle('Harry Potter und der Stein der Weisen');
// and german

When we already have our translations, we can work with the Book:

<?php

$harryPotter = new Book();

$harryPotter->addTranslation($englishBook);
$harryPotter->addTranslation($spanishBook);
$harryPotter->addTranslation($germanBook);

$harryPotter->setFallbackLocale('en'); // the locale which translation should be used
→˓by default

(continues on next page)

746 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

$harryPotter->setCurrentLocale('es'); // the locale which translation we want to get

$harryPotter->getTitle(); // returns 'Harry Potter y la Piedra Filosofal'

$harryPotter->setCurrentLocale('ru');

$harryPotter->getTitle(); // now returns "Harry Potter and the Philosopher's Stone"
// as the translation for chosen locale is unavailable,
// instead the translation for fallback locale is used

You can always use the getTranslation method by itself, but the same principal is in play:

<?php

$harryPotter->getTranslation('de'); // returns $germanBook
// but
$harryPotter->getTranslation();
// and
$harryPotter->getTranslation('hi');
// both return $englishBook

Caution: The getTranslation method throws \RuntimeException in two cases:

• No locale has been specified in the parameter and the current locale is undefined

• No fallback locale has been set

LocaleProvider

This service provides you with an easy way of managing locales. The first parameter set in it’s constructor is the
current locale and the second, fallback.

In this example let’s use the provider with our Book class which uses the Using TranslatableTrait:

<?php

use Example\Model\Book;
use Sylius\Component\Resource\Provider\LocaleProvider;

$provider = new LocaleProvider('de', 'en');

$book = new Book();

$book->setCurrentLocale($provider->getCurrentLocale());
$book->setFallbackLocale($provider->getFallbackLocale());

$book->getCurrentLocale(); // returns 'de'
$book->getFallbackLocale(); // returns 'en'

. . . and with an Implementing AbstractTranslation class such as the exemplary BookTranslation it goes:

<?php

(continues on next page)

9.1. Components & Bundles 747

https://secure.php.net/manual/pl/class.runtimeexception.php


Sylius

(continued from previous page)

use Example\Model\BookTranslation;
use Sylius\Component\Resource\Provider\LocaleProvider;

$provider = new LocaleProvider('de', 'en');

$bookTranslation = new BookTranslation();

$bookTranslation->setLocale($provider->getCurrentLocale());

$bookTranslation->getLocale(); // returns 'de'

Note: This service implements the LocaleProviderInterface.

Summary

phpspec examples

$ composer install
$ bin/phpspec run -fpretty --verbose

Bug tracking

This component uses GitHub issues. If you have found bug, please create an issue.

Learn more

• Resource Layer in the Sylius platform - concept documentation

Shipping

Shipments and shipping methods management for PHP E-Commerce applications. It contains flexible calculators
system for computing the shipping costs.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/shipping on Packagist);

• Use the official Git repository (https://github.com/Sylius/Shipping).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

748 Chapter 9. Components & Bundles

https://github.com/Sylius/Sylius/issues
https://packagist.org/packages/sylius/shipping
https://github.com/Sylius/Shipping


Sylius

Basic Usage

In all examples is used an exemplary class implementing ShippableInterface, which looks like:

<?php

use Sylius\Component\Shipping\Model\ShippableInterface;
use Sylius\Component\Shipping\Model\ShippingCategoryInterface;

class Wardrobe implements ShippableInterface
{

/**
* @var ShippingCategoryInterface

*/
private $category;

/**
* @var int

*/
private $weight;

/**
* @var int

*/
private $volume;

/**
* @var int

*/
private $width;

/**
* @var int

*/
private $height;

/**
* @var int

*/
private $depth;

/**
* {@inheritdoc}

*/
public function getShippingWeight()
{

return $this->weight;
}

/**
* @param int $weight

*/
public function setShippingWeight($weight)
{

$this->weight = $weight;
}

(continues on next page)

9.1. Components & Bundles 749



Sylius

(continued from previous page)

/**
* {@inheritdoc}

*/
public function getShippingVolume()
{

return $this->volume;
}

/**
* @param int $volume

*/
public function setShippingVolume($volume)
{

$this->volume = $volume;
}

/**
* {@inheritdoc}

*/
public function getShippingWidth()
{

// TODO: Implement getShippingWidth() method.
}

/**
* {@inheritdoc}

*/
public function getShippingHeight()
{

// TODO: Implement getShippingHeight() method.
}

/**
* {@inheritdoc}

*/
public function getShippingDepth()
{

// TODO: Implement getShippingDepth() method.
}

/**
* {@inheritdoc}

*/
public function getShippingCategory()
{

return $this->category;
}

/**
* @param ShippingCategoryInterface $category

*/
public function setShippingCategory(ShippingCategoryInterface $category)
{

$this->category = $category;
}

}

750 Chapter 9. Components & Bundles



Sylius

Shipping Category

Every shipping category has three identifiers, an ID, code and name. You can access those by calling ->getId(),
->getCode() and ->getName() methods respectively. The name is mutable, so you can change them by calling
and ->setName('Regular') on the shipping category instance.

Shipping Method

Every shipping method has three identifiers, an ID code and name. You can access those by calling ->getId(),
->gerCode() and ->getName() methods respectively. The name is mutable, so you can change them by calling
->setName('FedEx') on the shipping method instance.

Setting Shipping Category

Every shipping method can have shipping category. You can simply set or unset it by calling ->setCategory().

<?php

use Sylius\Component\Shipping\Model\ShippingMethod;
use Sylius\Component\Shipping\Model\ShippingCategory;
use Sylius\Component\Shipping\Model\ShippingMethodInterface;

$shippingCategory = new ShippingCategory();
$shippingCategory->setName('Regular'); // Regular weight items

$shippingMethod = new ShippingMethod();
$shippingMethod->setCategory($shippingCategory); //default null, detach
$shippingMethod->getCategory(); // Output will be ShippingCategory object
$shippingMethod->setCategory(null);

Setting Rule

Every shipping method can have many rules, which define its additional requirements. If a Shipment does not fulfill
these requirements (e.g. a rule states that the expected quantity of shipment items should be 2, but the Shipment has
only one ShippingItem), then the ShippingMethod having this rule cannot be used on this Shipment.

<?php

use Sylius\Component\Shipping\Model\Rule;
use Sylius\Component\Shipping\Model\ShippingMethod;

$shippingMethod = new ShippingMethod();
$rule = new Rule();

$shippingMethod->addRule($rule);
$shippingMethod->hasRule($rule); // returns true
$shippingMethod->getRules(); // collection of rules with count equals 1
$shippingMethod->removeRule($rule);
$shippingMethod->hasRule($rule); // returns false

9.1. Components & Bundles 751



Sylius

Shipping Method Translation

ShippingMethodTranslation allows shipping method’s name translation according to given locales. To see how to
use translation please go to Using Translations.

Rule

A Rule defines additional requirements for a ShippingMethod, which have to be fulfilled by the Shipment, if it has
to be delivered in a way described by this ShippingMethod.

<?php

use Sylius\Component\Shipping\Model\Rule;
use Sylius\Component\Shipping\Model\ShippingMethod;
use Sylius\Component\Shipping\Model\RuleInterface;

$shippingMethod = new ShippingMethod();
$rule = new Rule();
$rule->setConfiguration(array('count' => 1, 'equal' => true));
$rule->setType(RuleInterface::TYPE_ITEM_COUNT);
$shippingMethod->addRule($rule);

Shipment Item

You can use a ShippingItem for connecting a shippable object with a proper Shipment. Note that a ShippingItem
can exist without a Shipment assigned.

<?php

use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Model\ShipmentItem;
use Sylius\Component\Shipping\Model\ShipmentInterface;

$shipment = new Shipment();
$wardrobe = new Wardrobe();
$shipmentItem = new ShipmentItem();

$shipmentItem->setShipment($shipment);
$shipmentItem->getShipment(); // returns shipment object
$shipmentItem->setShipment(null);

$shipmentItem->setShippable($wardrobe);
$shipmentItem->getShippable(); // returns shippable object

$shipmentItem->getShippingState(); // returns const STATE_READY
$shipmentItem->setShippingState(ShipmentInterface::STATE_SOLD);

Shipment

Every Shipment can have the types of state defined in the ShipmentInterface and the ShippingMethod, which
describe the way of delivery.

752 Chapter 9. Components & Bundles



Sylius

<?php

use Sylius\Component\Shipping\Model\ShippingMethod;
use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Model\ShipmentInterface;

$shippingMethod = new ShippingMethod();

$shipment = new Shipment();
$shipment->getState(); // returns const checkout
$shipment->setState(ShipmentInterface::STATE_CANCELLED);

$shipment->setMethod($shippingMethod);
$shipment->getMethod();

Adding shipment item

You can add many shipment items to shipment, which connect shipment with shippable object.

<?php

use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Model\ShipmentItem;

$shipmentItem = new ShipmentItem();
$shipment = new Shipment();

$shipment->addItem($shipmentItem);
$shipment->hasItem($shipmentItem); // returns true
$shipment->getItems(); // returns collection of shipment items
$shipment->getShippingItemCount(); // returns 1
$shipment->removeItem($shipmentItem);

Tracking shipment

You can also define tracking code for your shipment:

<?php

use Sylius\Component\Shipping\Model\Shipment;

$shipment->isTracked();// returns false
$shipment->setTracking('5346172074');
$shipment->getTracking(); // returns 5346172074
$shipment->isTracked();// returns true

RuleCheckerInterface

This example shows how use an exemplary class implementing RuleCheckerInterface.

<?php

(continues on next page)

9.1. Components & Bundles 753



Sylius

(continued from previous page)

use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Model\ShipmentItem;
use Sylius\Component\Shipping\Model\Rule;
use Sylius\Component\Shipping\Checker\ItemCountRuleChecker;

$rule = new Rule();
$rule->setConfiguration(array('count' => 5, 'equal' => true));

$wardrobe = new Wardrobe();

$shipmentItem = new ShipmentItem();
$shipmentItem->setShippable($wardrobe);

$shipment = new Shipment();
$shipment->addItem($shipmentItem);

$ruleChecker = new ItemCountRuleChecker();
$ruleChecker->isEligible($shipment, $rule->getConfiguration()); // returns false,
→˓because
// quantity of shipping item in shipment is smaller than count from rule's
→˓configuration

Hint: You can read more about each of the available checkers in the Checkers chapter.

Delegating calculation to correct calculator instance

DelegatingCalculator class delegates the calculation of charge for particular shipping subject to a correct calculator
instance, based on the name defined on the shipping method. It uses ServiceRegistry to keep all calculators registered
inside container. The calculators are retrieved by name.

<?php

use Sylius\Component\Shipping\Model\ShippingMethod;
use Sylius\Component\Shipping\Calculator\DefaultCalculators;
use Sylius\Component\Shipping\Calculator\PerItemRateCalculator;
use Sylius\Component\Shipping\Calculator\FlexibleRateCalculator;
use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Model\ShipmentItem;
use Sylius\Component\Shipping\Calculator\DelegatingCalculator;
use Sylius\Component\Registry\ServiceRegistry;

$configuration = array(
'first_item_cost' => 1000,
'additional_item_cost' => 200,
'additional_item_limit' => 2

);
$shippingMethod = new ShippingMethod();
$shippingMethod->setConfiguration($configuration);
$shippingMethod->setCalculator(DefaultCalculators::FLEXIBLE_RATE);

$shipmentItem = new ShipmentItem();

$shipment = new Shipment();

(continues on next page)

754 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

$shipment->setMethod($shippingMethod);
$shipment->addItem($shipmentItem);

$flexibleRateCalculator = new FlexibleRateCalculator();
$perItemRateCalculator = new PerItemRateCalculator();

$calculatorRegistry = new ServiceRegistry(CalculatorInterface::class);
$calculatorRegistry->register(DefaultCalculators::FLEXIBLE_RATE,
→˓$flexibleRateCalculator);
$calculatorRegistry->register(DefaultCalculators::PER_ITEM_RATE,
→˓$perItemRateCalculator);

$delegatingCalculators = new DelegatingCalculator($calculatorRegistry);
$delegatingCalculators->calculate($shipment); // returns 1000

$configuration2 = array('amount' => 200);
$shippingMethod2 = new ShippingMethod();
$shippingMethod2->setConfiguration($configuration2);
$shippingMethod2->setCalculator(DefaultCalculators::PER_ITEM_RATE);

$shipment->setMethod($shippingMethod2);
$delegatingCalculators->calculate($shipment); // returns 200

Caution: The method ->register() and ->get() used in ->calculate throw InvalidArgumentExcep-
tion. The method ->calculate throws UndefinedShippingMethodException when given shipment does not
have a shipping method defined.

Hint: You can read more about each of the available calculators in the Calculators chapter.

Resolvers

ShippingMethodsResolver

Sylius has flexible system for displaying the shipping methods available for given shippables (subjects which imple-
ment ShippableInterface), which is base on ShippingCategory objects and category requirements. The requirements
are constant default defined in ShippingMethodInterface. To provide information about the number of allowed meth-
ods it use ShippingMethodResolver.

First you need to create a few instances of ShippingCategory class:

<?php

use Sylius\Component\Shipping\Model\ShippingCategory;

$shippingCategory = new ShippingCategory();
$shippingCategory->setName('Regular');
$shippingCategory1 = new ShippingCategory();
$shippingCategory1->setName('Light');

Next you have to create a repository w which holds a few instances of ShippingMethod. An InMemoryRepository,
which holds a collection of ShippingMethod objects, was used. The configuration is shown below:

9.1. Components & Bundles 755

http://php.net/manual/en/class.invalidargumentexception.php
http://php.net/manual/en/class.invalidargumentexception.php
http://api.sylius.com/Sylius/Component/Shipping/Calculator/UndefinedShippingMethodException.html


Sylius

<?php

// ...
// notice:
// $categories = array($shippingCategory, $shippingCategory1);

$firstMethod = new ShippingMethod();
$firstMethod->setCategory($categories[0]);

$secondMethod = new ShippingMethod();
$secondMethod->setCategory($categories[1]);

$thirdMethod = new ShippingMethod();
$thirdMethod->setCategory($categories[1]);
// ...

Finally you can create a method resolver:

<?php

use Sylius\Component\Shipping\Model\ShippingCategory;
use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Model\ShipmentItem;
use Sylius\Component\Shipping\Model\RuleInterface;
use Sylius\Component\Shipping\Checker\Registry\RuleCheckerRegistry;
use Sylius\Component\Shipping\Checker\ItemCountRuleChecker;
use Sylius\Component\Shipping\Resolver\ShippingMethodsResolver;
use Sylius\Component\Shipping\Checker\ShippingMethodEligibilityChecker;

$ruleCheckerRegistry = new RuleCheckerRegistry();
$methodEligibilityChecker = new shippingMethodEligibilityChecker(
→˓$ruleCheckerRegistry);

$shippingRepository = new InMemoryRepository(); //it has collection of shipping
→˓methods

$wardrobe = new Wardrobe();
$wardrobe->setShippingCategory($shippingCategory);
$wardrobe2 = new Wardrobe();
$wardrobe2->setShippingCategory($shippingCategory1);

$shipmentItem = new ShipmentItem();
$shipmentItem->setShippable($wardrobe);
$shipmentItem2 = new ShipmentItem();
$shipmentItem2->setShippable($wardrobe2);

$shipment = new Shipment();
$shipment->addItem($shipmentItem);
$shipment->addItem($shipmentItem2);

$methodResolver = new ShippingMethodsResolver($shippingRepository,
→˓$methodEligibilityChecker);
$methodResolver->getSupportedMethods($shipment);

The ->getSupportedMethods($shipment) method return the number of methods allowed for shipment ob-
ject. There are a few possibilities:

1. All shippable objects and all ShippingMethod have category Regular. The returned number will be 3.

756 Chapter 9. Components & Bundles



Sylius

2. All ShippingMethod and one shippable object have category Regular. Second shippable object has category
Light. The returned number will be 3.

3. Two ShippingMethod and one shippable object have category Regular. Second shippable object and one Ship-
pingMethod have category Light. The returned number will be 3.

4. Two ShippingMethod and one shippable object have category Regular. Second shippable object and second
ShippingMethod have category Light. The second Shipping category sets the category requirements as CATE-
GORY_REQUIREMENT_MATCH_NONE. The returned number will be 2.

5. Two ShippingMethod and all shippable objects have category Regular. Second ShippingMethod
has category Light. The second Shipping category sets the category requirements as CATE-
GORY_REQUIREMENT_MATCH_NONE. The returned number will be 3.

6. Two ShippingMethod and one shippable object have category Regular. Second shippable object and second
ShippingMethod have category Light. The second Shipping category sets the category requirements as CATE-
GORY_REQUIREMENT_MATCH_ALL. The returned number will be 2.

7. Two ShippingMethod have category Regular. All shippable object and second ShippingMethod
have category Light. The second Shipping category sets the category requirements as CATE-
GORY_REQUIREMENT_MATCH_ALL. The returned number will be 1.

Note: The categoryRequirement property in ShippingMethod is set default to CATE-
GORY_REQUIREMENT_MATCH_ANY. For more detailed information about requirements please go to Shipping
method requirements.

Calculators

FlatRateCalculator

FlatRateCalculator class charges a flat rate per shipment.

<?php

use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Calculator\FlatRateCalculator;
use Sylius\Component\Shipping\Model\ShipmentItem;

$shipmentItem = new ShipmentItem();
$shipment = new Shipment();
$shipment->addItem($shipmentItem);

$flatRateCalculator = new FlatRateCalculator();
// this configuration should be defined in shipping method allowed for shipment
$configuration = array('amount' => 1500);

$flatRateCalculator->calculate($shipment, $configuration); // returns 1500
$configuration = array('amount' => 500);
$flatRateCalculator->calculate($shipment, $configuration); // returns 500

FlexibleRateCalculator

FlexibleRateCalculator calculates a shipping charge, where first item has different cost that other items.

9.1. Components & Bundles 757



Sylius

<?php

use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Calculator\FlexibleRateCalculator;

$shipment = new Shipment();
$shipmentItem = new ShipmentItem();
$shipmentItem2 = new ShipmentItem();
$shipmentItem3 = new ShipmentItem();
$shipmentItem4 = new ShipmentItem();

// this configuration should be defined in shipping method allowed for shipment
$configuration = array(

'first_item_cost' => 1000,
'additional_item_cost' => 200,
'additional_item_limit' => 2

);

$flexibleRateCalculator = new FlexibleRateCalculator();

$shipment->addItem($shipmentItem);
$flexibleRateCalculator->calculate($shipment, $configuration); // returns 1000

$shipment->addItem($shipmentItem2);
$shipment->addItem($shipmentItem3);
$flexibleRateCalculator->calculate($shipment, $configuration); // returns 1400

$shipment->addItem($shipmentItem4);
$flexibleRateCalculator->calculate($shipment, $configuration);
// returns 1400, because additional item limit is 3

PerItemRateCalculator

PerItemRateCalculator charges a flat rate per item.

<?php

use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Model\ShipmentItem;
use Sylius\Component\Shipping\Calculator\PerItemRateCalculator;

// this configuration should be defined in shipping method allowed for shipment
$configuration = array('amount' => 200);
$perItemRateCalculator = new PerItemRateCalculator();

$shipment = new Shipment();
$shipmentItem = new ShipmentItem();
$shipmentItem2 = new ShipmentItem();

$perItemRateCalculator->calculate($shipment, $configuration); // returns 0

$shipment->addItem($shipmentItem);
$perItemRateCalculator->calculate($shipment, $configuration); // returns 200

$shipment->addItem($shipmentItem2);
$perItemRateCalculator->calculate($shipment, $configuration); // returns 400

758 Chapter 9. Components & Bundles



Sylius

VolumeRateCalculator

VolumeRateCalculator charges amount rate per volume.

<?

use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Model\ShipmentItem;
use Sylius\Component\Shipping\Calculator\VolumeRateCalculator;

$wardrobe = new Wardrobe();

$shipmentItem = new ShipmentItem();
$shipmentItem->setShippable($wardrobe);

$shipment = new Shipment();
$shipment->addItem($shipmentItem);

$configuration = array('amount' => 200, 'division' => 5);
// this configuration should be defined in shipping method allowed for shipment
$volumeRateCalculator = new VolumeRateCalculator();

$wardrobe->setShippingVolume(100);
$volumeRateCalculator->calculate($shipment, $configuration); // returns 4000

$wardrobe->setShippingVolume(20);
$volumeRateCalculator->calculate($shipment, $configuration); // returns 800

Hint: To see implementation of Wardrobe class please go to Basic Usage.

WeightRateCalculator

WeightRateCalculator charges amount rate per weight.

<?php

use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Model\ShipmentItem;
use Sylius\Component\Shipping\Calculator\WeightRateCalculator;

$configuration = array('fixed' => 200, 'variable' => 500, 'division' => 5);
// this configuration should be defined in shipping method allowed for shipment
$weightRateCalculator = new WeightRateCalculator();

$wardrobe = new Wardrobe();

$shipmentItem = new ShipmentItem();
$shipmentItem->setShippable($wardrobe);

$shipment = new Shipment();
$shipment->addItem($shipmentItem);

$wardrobe->setShippingWeight(100);
$weightRateCalculator->calculate($shipment, $configuration); // returns 10200

(continues on next page)

9.1. Components & Bundles 759



Sylius

(continued from previous page)

$wardrobe->setShippingWeight(10);
$weightRateCalculator->calculate($shipment, $configuration); // returns 1200

Hint: To see implementation of Wardrobe class please go to Basic Usage.

Checkers

ItemCountRuleChecker

This class checks if item count exceeds (or at least is equal) the configured count. An example about how to use it is
on RuleCheckerInterface.

Note: This checker implements the RuleCheckerInterface.

For more detailed information go to Sylius API ItemCountRuleChecker.

ShippingMethodEligibilityChecker

This class checks if shipping method rules are capable of shipping given subject.

<?php

use Sylius\Component\Shipping\Model\Rule;
use Sylius\Component\Shipping\Model\ShippingMethod;
use Sylius\Component\Shipping\Model\ShippingCategory;
use Sylius\Component\Shipping\Model\Shipment;
use Sylius\Component\Shipping\Model\ShipmentItem;
use Sylius\Component\Shipping\Model\ShippingMethodTranslation;
use Sylius\Component\Shipping\Model\RuleInterface;
use Sylius\Component\Shipping\Checker\ItemCountRuleChecker;
use Sylius\Component\Shipping\Checker\ShippingMethodEligibilityChecker;
use Sylius\Component\Shipping\Checker\RuleCheckerInterface;
use Sylius\Component\Registry\ServiceRegistry;

$rule = new Rule();
$rule->setConfiguration(array('count' => 0, 'equal' => true));
$rule->setType(RuleInterface::TYPE_ITEM_COUNT);

$shippingCategory = new ShippingCategory();
$shippingCategory->setName('Regular');

$hippingMethodTranslate = new ShippingMethodTranslation();
$hippingMethodTranslate->setLocale('en');
$hippingMethodTranslate->setName('First method');

$shippingMethod = new ShippingMethod();
$shippingMethod->setCategory($shippingCategory);
$shippingMethod->setCurrentLocale('en');

(continues on next page)

760 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Shipping/Checker/ItemCountRuleChecker.html


Sylius

(continued from previous page)

$shippingMethod->setFallbackLocale('en');
$shippingMethod->addTranslation($hippingMethodTranslate);

$shippingMethod->addRule($rule);

$shippable = new ShippableObject();
$shippable->setShippingCategory($shippingCategory);

$shipmentItem = new ShipmentItem();
$shipmentItem->setShippable($shippable);

$shipment = new Shipment();
$shipment->addItem($shipmentItem);

$ruleChecker = new ItemCountRuleChecker();

$ruleCheckerRegistry = new ServiceRegistry(RuleCheckerInterface::class);
$ruleCheckerRegistry->register(RuleInterface::TYPE_ITEM_COUNT, $ruleChecker);

$methodEligibilityChecker = new ShippingMethodEligibilityChecker(
→˓$ruleCheckerRegistry);

///returns true, because quantity of shipping item in shipment is equal as count in
→˓rule's configuration
$methodEligibilityChecker->isEligible($shipment, $shippingMethod);

// returns true, because the shippable object has the same category as shippingMethod
// and shipping method has default category requirement
$methodEligibilityChecker->isCategoryEligible($shipment, $shippingMethod);

Caution: The method ->register() throws InvalidArgumentException.

Note: This model implements the ShippingMethodEligibilityCheckerInterface.

For more detailed information go to Sylius API ShippingMethodEligibilityChecker.

Models

Shipment

Shipment object has methods to represent the events that take place during the process of shipment. Shipment has the
following properties:

9.1. Components & Bundles 761

http://php.net/manual/en/class.invalidargumentexception.php
http://api.sylius.com/Sylius/Component/Shipping/Checker/ShippingMethodEligibilityChecker.html


Sylius

Property Description
id Unique id of the shipment
state Reference to constant from ShipmentInterface
method Reference to ShippingMethod
items Reference to Collection of shipping items
tracking Tracking code for shipment
createdAt Creation time
updatedAt Last update time

Note: This model implements the ShipmentInterface.

For more detailed information go to Sylius API Shipment.

ShipmentItem

ShipmentItem object is used for connecting a shippable object with a proper shipment. ShipmentItems have the
following properties:

Property Description
id Unique id of the ShipmentItem
shipment Reference to Shipment
shippable Reference to shippable object
shippingState Reference to constant from ShipmentInterface
createdAt Creation time
updatedAt Last update time

Note: This model implements the ShipmentItemInterface.

For more detailed information go to Sylius API ShipmentItem.

ShippingCategory

ShippingCategory object represents category which can be common for ShippingMethod and object which imple-
ments ShippableInterface. ShippingCategory has the following properties:

Property Description
id Unique id of the ShippingCategory
code Unique code of the ShippingCategory
name e.g. “Regular”
description e.g. “Regular weight items”
createdAt Creation time
updatedAt Last update time

Hint: To understand relationship between ShippingMethod and shippable object base on ShippingCategory go to
Shipping method requirements.

762 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Shipping/Model/Shipment.html
http://api.sylius.com/Sylius/Component/Shipping/Model/ShipmentItem.html


Sylius

Note: This model implements the ShippingCategoryInterface.

For more detailed information go to Sylius API ShippingCategory.

ShippingMethod

ShippingMethod object represents method of shipping allowed for given shipment. It has the following properties:

Property Description
id Unique id of the ShippingMethod
code Unique code of the ShippingMethod
category e.g. “Regular”
categoryRequirement Reference to constant from ShippingMethodInterface
enabled Boolean flag of enablement
calculator Reference to constant from DefaultCalculators
configuration Extra configuration for calculator
rules Collection of Rules
createdAt Creation time
updatedAt Last update time
currentTranslation Translation chosen from translations list accordingly to current locale
currentLocale Currently set locale
translations Collection of translations
fallbackLocale Locale used in case no translation is available

Note: This model implements the ShippingMethodInterface and uses the Using TranslatableTrait.

For more detailed information go to Sylius API ShippingMethod.

ShippingMethodTranslation

ShippingMethodTranslation object allows to translate the shipping method’s name accordingly to the provided lo-
cales. It has the following properties:

Property Description
id Unique id of the ShippingMethodTranslation
name e.g. “FedEx”
locale Translation locale
translatable The translatable model assigned to this translation

Note: This model implements the ShippingMethodTranslationInterface and extends Implementing AbstractTransla-
tion class.

Form more information go to Sylius API ShippingMethodTranslation.

9.1. Components & Bundles 763

http://api.sylius.com/Sylius/Component/Shipping/Model/ShippingCategory.html
http://api.sylius.com/Sylius/Component/Shipping/Model/ShippingMethod.html
http://api.sylius.com/Sylius/Component/Shipping/Model/ShippingMethodTranslation.html


Sylius

Rule

A Rule object represents additional restrictions which have to be fulfilled by a shippable object in order to be supported
by a given ShippingMethod. Rule has the following properties:

Property Description
id Unique id of the rule
type Reference to constant from RuleInterface
configuration Additional restriction which have to be fulfil
method Reference to ShippingMethod

Note: This model implements the RuleInterface.

For more detailed information go to Sylius API Rule.

Interfaces

Model Interfaces

RuleInterface

This interface should be implemented by class which will provide additional restriction for ShippingMethod.

Note: For more detailed information go to Sylius API RuleInterface.

ShipmentInterface

This interface should be implemented by class which will provide information about shipment like: state, shipping
method and so on. It also has a method for shipment tracking.

Note: This interface extends the ShippingSubjectInterface.

For more detailed information go to Sylius API ShipmentInterface.

ShipmentItemInterface

This interface is implemented by class responsible for connecting shippable object with proper shipment. It also
provides information about shipment state.

Note: This interface extends the ShippingSubjectInterface.

For more detailed information go to Sylius API ShipmentItemInterface.

764 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Shipping/Model/Rule.html
http://api.sylius.com/Sylius/Component/Shipping/Model/RuleInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Model/ShipmentInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Model/ShipmentItemInterface.html


Sylius

ShippableInterface

This interface should be implemented by model representing physical object which can by stored in a shop.

Note: For more detailed information go to Sylius API ShippableInterface.

ShippingCategoryInterface

This interface should be implemented by model representing a shipping category and it is required if you want to
classify shipments and connect it with right shipment method.

Note: This interface extends the CodeAwareInterface and TimestampableInterface.

For more detailed information go to Sylius API ShippingCategoryInterface.

ShippingMethodInterface

This interface provides default requirements for system of matching shipping methods with shipments based on Ship-
pingCategory and allows to add a new restriction to a basic shipping method.

Note: This interface extends the CodeAwareInterface, TimestampableInterface and ShippingMethodTranslationIn-
terface.

For more detailed information go to Sylius API ShippingMethodInterface.

ShippingMethodTranslationInterface

This interface should be implemented by model responsible for keeping translation for ShippingMethod name.

Note: For more detailed information go to Sylius API ShippingMethodTranslationInterface.

ShippingSubjectInterface

This interface should be implemented by any object, which needs to be evaluated by default shipping calculators and
rule checkers.

Note: For more detailed information go to Sylius API ShippingSubjectInterface.

Calculator interfaces

9.1. Components & Bundles 765

http://api.sylius.com/Sylius/Component/Shipping/Model/ShippableInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Model/ShippingCategoryInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Model/ShippingMethodInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Model/ShippingMethodTranslationInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Model/ShippingSubjectInterface.html


Sylius

CalculatorInterface

This interface provides basic methods for calculators. Every custom calculator should implement CalculatorInterface
or extends class Calculator, which has a basic implementation of methods from this interface.

Note: For more detailed information go to Sylius API CalculatorInterface.

DelegatingCalculatorInterface

This interface should be implemented by any object, which will be responsible for delegating the calculation to a
correct calculator instance.

Note: For more detailed information go to Sylius API DelegatingCalculatorInterface.

CalculatorRegistryInterface

This interface should be implemented by an object, which will keep all calculators registered inside container.

Note: For more detailed information go to Sylius API CalculatorRegistryInterface.

Checker Interfaces

RuleCheckerRegistryInterface

This interface should be implemented by an service responsible for providing an information about available rule
checkers.

Note: For more detailed information go to Sylius API RuleCheckerRegistryInterface.

RuleCheckerInterface

This interface should be implemented by an object, which checks if a shipping subject meets the configured require-
ments.

Note: For more detailed information go to Sylius API RuleCheckerInterface.

ShippingMethodEligibilityCheckerInterface

This interface should be implemented by an object, which checks if the given shipping subject is eligible for the
shipping method rules.

766 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Shipping/Calculator/CalculatorInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Calculator/DelegatingCalculatorInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Calculator/Registry/CalculatorRegistryInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Checker/Registry/RuleCheckerRegistryInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Checker/RuleCheckerInterface.html


Sylius

Note: For more detailed information go to Sylius API ShippingMethodEligibilityCheckerInterface.

Processor Interfaces

ShipmentProcessorInterface

This interface should be implemented by an object, which updates shipments and shipment items states.

Note: For more detailed information go to Sylius API ShipmentProcessorInterface.

Resolver Interfaces

ShippingMethodsResolverInterface

This interface should be used to create object, which provides information about all allowed shipping methods for
given shipping subject.

Note: For more detailed information go to Sylius API ShippingMethodsResolverInterface.

State Machine

Shipment States

Sylius itself uses a state machine system to manage all states of the business domain. This component has some
sensible default states defined in ShipmentInterface.

All new Shipment instances have the state ready by default, which means they are prepared to be sent.

The following states are defined:

Related constant State Description
STATE_READY ready Payment received, shipment has been ready to be sent
STATE_CHECKOUT checkout Shipment has been created
STATE_ONHOLD onhold Shipment has been locked and it has been waiting to payment
STATE_PENDING pending Shipment has been waiting for confirmation of receiving payment
STATE_SHIPPED shipped Shipment has been sent to the customer
STATE_CANCELLED cancelled Shipment has been cancelled
STATE_RETURNED returned Shipment has been returned

Learn more

• Shipments in the Sylius platform - concept documentation

9.1. Components & Bundles 767

http://api.sylius.com/Sylius/Component/Shipping/Checker/ShippingMethodEligibilityCheckerInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Processor/ShipmentProcessorInterface.html
http://api.sylius.com/Sylius/Component/Shipping/Resolver/ShippingMethodsResolverInterface.html


Sylius

Taxation

Tax rates and tax classification for PHP applications. You can define different tax categories and match them to objects.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/taxation on Packagist);

• Use the official Git repository (https://github.com/Sylius/Taxation).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

Tax Rate

Every tax rate has three identifiers, an ID, code and name. You can access those by calling ->getId(),
->getCode() and getName() respectively. The name and code are mutable, so you can change them by calling
->setCode('X12XW') and ->setName('EU VAT') on the tax rate instance.

Setting Tax Amount

A tax rate has two basic amounts - the amount and the amount as percentage (by default equal 0).

<?php

use Sylius\Component\Taxation\Model\TaxRate;
use Sylius\Component\Taxation\Model\TaxCategory;

$taxRate = new TaxRate();
$taxCategory = new TaxCategory();

$taxRate->setAmount(0.5);
$taxRate->getAmount(); // Output will be 0.5
$taxRate->getAmountAsPercentage(); // Output will be 50

Setting Tax Category

Every tax rate can have a tax category. You can simply set or unset it by calling ->setCategory().

<?php

$taxRate->setCategory($taxCategory);
$taxRate->getCategory(); // Output will be $taxCategory object
$taxRate->setCategory();
$taxRate->getCategory(); // Output will be null

768 Chapter 9. Components & Bundles

https://packagist.org/packages/sylius/taxation
https://github.com/Sylius/Taxation


Sylius

Including tax rate in price

You can mark a tax rate as included in price by calling setIncludedInPrice(true) (false by default). To check
if tax rate is included in price call isIncludedInPrice().

Hint: You can read how this property influences on the tax calculation in chapter Default Calculator.

Setting calculator

To set type of calculator for your tax rate object call setCalculator('nameOfCalculator'). Notice that
nameOfCalculator should be the same as name of your calculator object.

Hint: To understand meaning of this property go to Delegating Calculator.

Tax Category

Every tax category has three identifiers, an ID, code and name. You can access those by calling ->getId(),
->getCode() and getName() respectively. The code and name are mutable, so you can change them by calling
->setCode('X12X') and ->setName('Clothing') on the tax category instance.

Tax Rate Management

The collection of tax rates (Implementing the Doctrine\Common\Collections\Collection interface) can
be obtained using the getRates() method. To add or remove tax rates, you can use the addRate() and
removeRate() methods.

<?php

use Sylius\Component\Taxation\Model\TaxRate;
use Sylius\Component\Taxation\Model\TaxCategory;

$taxCategory = new TaxCategory();

$taxRate1 = new TaxRate();
$taxRate1->setName('taxRate1');

$taxRate2 = new TaxRate();
$taxRate2->setName('taxRate2');

$taxCategory->addRate($taxRate1);
$taxCategory->addRate($taxRate2);
$taxCategory->getRates();
//returns a collection of objects that implement the TaxRateInterface
$taxCategory->removeRate($taxRate1);
$taxCategory->hasRate($taxRate2); // returns true
$taxCategory->getRates(); // returns collection with one element

9.1. Components & Bundles 769



Sylius

Calculators

Default Calculator

Default Calculator gives you the ability to calculate the tax amount for given base amount and tax rate.

<?php

use Sylius\Component\Taxation\Model\TaxRate;
use Sylius\Component\Taxation\Calculator\DefaultCalculator;

$taxRate = new TaxRate();
$taxRate->setAmount(0.2);
$basicPrice = 100;
$defaultCalculator = new DefaultCalculator();
$defaultCalculator->calculate($basicPrice, $taxRate); //return 20
$taxRate->setIncludedInPrice(true);
$defaultCalculator->calculate($basicPrice, $taxRate);
// return 17, because the tax is now included in price

Delegating Calculator

Delegating Calculator gives you the ability to delegate the calculation of amount of tax to a correct calculator instance
based on a type defined in an instance of TaxRate class.

<?php

use Sylius\Component\Taxation\Model\TaxRate;
use Sylius\Component\Taxation\Calculator\DefaultCalculator;
use Sylius\Component\Registry\ServiceRegistry;
use Sylius\Component\Taxation\Calculator\DelegatingCalculator;
use Sylius\Component\Taxation\Calculator\CalculatorInterface;

$taxRate = new TaxRate();
$taxRate->setAmount(0.2);
$base = 100; //set base price to 100
$defaultCalculator = new DefaultCalculator();

$serviceRegistry =
new ServiceRegistry(CalculatorInterface::class);
$serviceRegistry->register('default', $defaultCalculator);

$delegatingCalculator = new DelegatingCalculator($serviceRegistry);
$taxRate->setCalculator('default');
$delegatingCalculator->calculate($base, $taxRate); // returns 20

Tax Rate Resolver

TaxRateResolver gives you ability to get information about tax rate for given taxable object and specific criteria. The
criteria describes tax rate object.

<?php

(continues on next page)

770 Chapter 9. Components & Bundles



Sylius

(continued from previous page)

use Sylius\Component\Taxation\Resolver\TaxRateResolver;
use Sylius\Component\Taxation\Model\TaxCategory;

$taxRepository = new InMemoryTaxRepository(); // class which implements
→˓RepositoryInterface
$taxRateResolver= new TaxRateResolver($taxRepository);

$taxCategory = new TaxCategory();
$taxCategory->setName('TaxableGoods');

$taxableObject = new TaxableObject(); // class which implements TaxableInterface
$taxableObject->setTaxCategory($taxCategory);

$criteria = array('name' => 'EU VAT');
$taxRateResolver->resolve($taxableObject, $criteria);
// returns instance of class TaxRate, which has name 'EU VAT' and category
→˓'TaxableGoods'

Models

TaxRate

Tax rate model holds the configuration for particular tax rate.

Property Description
id Unique id of the tax rate
code Unique code of the tax rate
category Tax rate category
name Name of the rate
amount Amount as float (for example 0,23)
includedInPrice Is the tax included in price?
calculator Type of calculator
createdAt Date when the rate was created
updatedAt Date of the last tax rate update

Note: This model implements TaxRateInterface.

TaxCategory

Tax category model holds the configuration for particular tax category.

9.1. Components & Bundles 771



Sylius

Property Description
id Unique id of the tax category
code Unique code of the tax category
name Name of the category
description Description of tax category
rates Collection of tax rates belonging to this tax category
createdAt Date when the category was created
updatedAt Date of the last tax category update

Note: This model implements TaxCategoryInterface.

Interfaces

Model Interfaces

Taxable Interface

To create taxable object which has specific type of tax category, the object class needs to implement TaxableInterface.

Note: For more detailed information go to Sylius API Taxable Interface.

Tax Category Interface

To create object which provides information about tax category, the object class needs to implement TaxCategoryIn-
terface.

Note: This interface extends CodeAwareInterface and TimestampableInterface.

For more detailed information go to Sylius API Tax Category Interface.

Tax Rate Interface

To create object which provides information about tax rate, the object class needs to implement TaxCategoryInter-
face.

Note: This interface extends CodeAwareInterface and TimestampableInterface.

For more detailed information go to Sylius API Tax Rate Interface.

Calculator Interfaces

772 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Taxation/Model/TaxableInterface.html
http://api.sylius.com/Sylius/Component/Taxation/Model/TaxCategoryInterface.html
http://api.sylius.com/Sylius/Component/Taxation/Model/TaxCategoryInterface.html


Sylius

CalculatorInterface

To make the calculator able to calculate the tax amount for given base amount and tax rate, the calculator class needs
implement the CalculatorInterface.

Note: For more detailed information about the interfaces go to Sylius API Calculator Interface.

Resolver Interfaces

TaxRateResolverInterface

To create class which provides information about tax rate for given taxable object and specific criteria, the class needs
to implement TaxRateResolverInterface. The criteria describes tax rate object.

Note: For more detailed information about the interfaces go to Sylius API Tax Rate Resolver Interface.

Learn more

• Taxation in the Sylius platform - concept documentation

Taxonomy

Basic taxonomies library for any PHP application. Taxonomies work similarly to the distinction of species in the fauna
and flora and their aim is to help the store owner manage products.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/taxonomy on Packagist);

• Use the official Git repository (https://github.com/Sylius/Taxonomy).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Basic Usage

<?php

use Sylius\Component\Taxonomy\Model\Taxon;
use Sylius\Component\Taxonomy\Model\Taxonomy;

// Let's assume we want to begin creating new taxonomy in our system
// therefore we think of a new taxon that will be a root for us.
$taxon = new Taxon();

(continues on next page)

9.1. Components & Bundles 773

http://api.sylius.com/Sylius/Component/Taxation/Calculator/CalculatorInterface.html
http://api.sylius.com/Sylius/Component/Taxation/Resolver/TaxRateResolverInterface.html
https://packagist.org/packages/sylius/taxonomy
https://github.com/Sylius/Taxonomy


Sylius

(continued from previous page)

// And later on we create a taxonomy with our taxon as a root.
$taxonomy = new Taxonomy($taxon);

// Before we can start using the newly created taxonomy, we have to define its
→˓locales.
$taxonomy->setFallbackLocale('en');
$taxonomy->setCurrentLocale('en');
$taxonomy->setName('Root');

$taxon->getName(); //will return 'Root'

Models

Taxonomy is a list constructed from individual Taxons. Taxonomy is a special case of Taxon itself (it has no parent).
All taxons can have many child taxons, you can define as many of them as you need.

Good examples of taxonomies are “Categories” and “Brands”. Below you can see exemplary trees.

| Categories
|\__T-Shirts
| |\__Men
| \__Women
|\__Stickers
|\__Mugs
\__Books

| Brands
|\__SuperTees
|\__Stickypicky
|\__Mugland
\__Bookmania

Taxon

Property Description
id Unique id of the taxon
code Unique code of the taxon
name Name of the taxon taken form the TaxonTranslation
slug Urlized name taken from the TaxonTranslation
description Description of taxon taken from the TaxonTranslation
parent Parent taxon
children Sub taxons
left Location within taxonomy
right Location within taxonomy
level How deep it is in the tree
position Position of the taxon on its taxonomy

Note: This model implements the TaxonInterface. You will find more information about this model in Sylius API
Taxon.

774 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Taxonomy/Model/Taxon.html
http://api.sylius.com/Sylius/Component/Taxonomy/Model/Taxon.html


Sylius

TaxonTranslation

This model stores translations for the Taxon instances.

Property Description
id Unique id of the taxon translation
name Name of the taxon
slug Urlized name
description Description of taxon

Note: This model implements the TaxonTranslationInterface. You will find more information about this model in
Sylius API TaxonTranslation.

Interfaces

Models Interfaces

TaxonInterface

The TaxonInterface gives an object an ability to have Taxons assigned as children.

Note: This interface extends the CodeAwareInterface, TranslatableInterface and the TaxonTranslationInterface.

You will find more information about that interface in Sylius API TaxonInterface.

TaxonsAwareInterface

The TaxonsAwareInterface should be implemented by models that can be classified with taxons.

Note: You will find more information about that interface in Sylius API TaxonsAwareInterface.

TaxonTranslationInterface

This interface should be implemented by models that will store the Taxon translation data.

Note: You will find more information about that interface in Sylius API TaxonTranslationInterface.

Services Interfaces

TaxonRepositoryInterface

In order to have a possibility to get Taxons as a list you should create a repository class, that implements this interface.

9.1. Components & Bundles 775

http://api.sylius.com/Sylius/Component/Taxonomy/Model/TaxonTranslation.html
http://api.sylius.com/Sylius/Component/Taxonomy/Model/TaxonInterface.html
http://api.sylius.com/Sylius/Component/Taxonomy/Model/TaxonsAwareInterface.html
http://api.sylius.com/Sylius/Component/Taxonomy/Model/TaxonTranslationInterface.html


Sylius

Note: You will find more information about that interface in Sylius API TaxonRepositoryInterface.

Learn more

• Taxons in the Sylius platform - concept documentation

User

Users management implementation in PHP.

Installation

You can install the component in 2 different ways:

• Install it via Composer (sylius/user on Packagist);

• Use the official Git repository (https://github.com/Sylius/User).

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Oth-
erwise, your application won’t be able to find the classes of this Sylius component.

Models

Customer

The customer is represented as a Customer instance. It should have everything concerning personal data and as default
has the following properties:

Property Description Type
id Unique id of the customer integer
email Customer’s email string
emailCanonical Normalized representation of an email (lowercase) string
firstName Customer’s first name string
lastName Customer’s last name string
birthday Customer’s birthday DateTime
gender Customer’s gender string
user Corresponding user object UserInterface
group Customer’s groups Collection
createdAt Date of creation DateTime
updatedAt Date of update DateTime

Note: This model implements CustomerInterface

776 Chapter 9. Components & Bundles

http://api.sylius.com/Sylius/Component/Taxonomy/Repository/TaxonRepositoryInterface.html
https://packagist.org/packages/sylius/user
https://github.com/Sylius/User


Sylius

User

The registered user is represented as an User instance. It should have everything concerning application user prefer-
ences and a corresponding Customer instance. As default has the following properties:

Property Description Type
id Unique id of the user integer
customer Customer which is associated to this user (required) CustomerInterface
username User’s username string
usernameCanonical Normalized representation of a username (lowercase) string
enabled Indicates whether user is enabled bool
salt Additional input to a function that hashes a password string
password Encrypted password, must be persisted string
plainPassword Password before encryption, must not be persisted string
lastLogin Last login date DateTime
confirmationToken Random string used to verify user string
passwordRequestedAt Date of password request DateTime
locked Indicates whether user is locked bool
expiresAt Date when user account will expire DateTime
credentialExpiresAt Date when user account credentials will expire DateTime
roles Security roles of a user array
oauthAccounts Associated OAuth accounts Collection
createdAt Date of creation DateTime
updatedAt Date of update DateTime

Note: This model implements UserInterface

CustomerGroup

The customer group is represented as a CustomerGroup instance. It can be used to classify customers. As default
has the following properties:

Property Description Type
id Unique id of the group integer
name Group name string

Note: This model implements CustomerGroupInterface

UserOAuth

The user OAuth account is represented as an UserOAuth instance. It has all data concerning OAuth account and as
default has the following properties:

9.1. Components & Bundles 777



Sylius

Property Description Type
id Unique id of the customer integer
provider OAuth provider name string
identifier OAuth identifier string
accessToken OAuth access token string
user Corresponding user account UserInterface

Note: This model implements UserOAuthInterface

Basic Usage

Canonicalization

In order to be able to query or sort by some string, we should normalize it. The most common use case for that is
canonical email or username. We can then allow for case insensitive users identification by email or username.

Canonicalizer

User component offers simple canonicalizer which converts given string to lowercase letters. Example usage:

// File example: src/script.php
<?php

// update this to the path to the "vendor/"
// directory, relative to this file
require_once __DIR__.'/../vendor/autoload.php';

use Sylius\Component\User\Model\User;
use Sylius\Component\Canonicalizer\Canonicalizer;

$canonicalizer = new Canonicalizer();

$user = new User();
$user->setEmail('MyEmail@eXample.Com');

$canonicalEmail = $canonicalizer->canonicalize($user->getEmail());
$user->setEmailCanonical($canonicalEmail);

$user->getEmail() // returns 'MyEmail@eXample.Com'
$user->getEmailCanonical() // returns 'myemail@example.com'

Updating password

In order to store user’s password safely you need to encode it and get rid of the plain password.

778 Chapter 9. Components & Bundles



Sylius

PasswordUpdater

User component offers simple password updater and encoder. All you need to do is set the plain password on User
entity and use updatePassword method on PasswordUpdater. The plain password will be removed and the encoded
password will be set on User entity. Now you can safely store the encoded password. Example usage:

// File example: src/script.php
<?php

// update this to the path to the "vendor/"
// directory, relative to this file
require_once __DIR__.'/../vendor/autoload.php';

use Sylius\Component\User\Model\User;
use Sylius\Component\User\Security\PasswordUpdater;
use Sylius\Component\User\Security\UserPbkdf2PasswordEncoder;

$user = new User();
$user->setPlainPassword('secretPassword');

$user->getPlainPassword(); // returns 'secretPassword'
$user->getPassword(); // returns null

// after you set user's password you need to encode it and get rid of unsafe plain
→˓text
$passwordUpdater = new PasswordUpdater(new UserPbkdf2PasswordEncoder());
$passwordUpdater->updatePassword($user);

// the plain password no longer exist
$user->getPlainPassword(); // returns null
// encoded password can be safely stored
$user->getPassword(); //returns 'notPredictableBecauseOfSaltHashedPassword'

Note: The password encoder takes user’s salt (random, autogenerated string in the User constructor) as an additional
input to a one-way function that hashes a password. The primary function of salts is to defend against dictionary
attacks versus a list of password hashes and against pre-computed rainbow table attacks.

Learn more

• Customers & Users in the Sylius platform - concept documentation

• Components General Guide

• Addressing

• Attribute

• Channel

• Currency

• Grid

• Inventory

• Locale

9.1. Components & Bundles 779



Sylius

• Mailer

• Order

• Payment

• Product

• Promotion

• Registry

• Resource

• Shipping

• Taxation

• Taxonomy

• User

• Sylius Components Documentation

• Sylius Bundles Documentation

• Sylius Components Documentation

• Sylius Bundles Documentation

780 Chapter 9. Components & Bundles



Index

A
Address Book, 41
Addresses, 40
Adjustments, 66
AdminUser, 37
Architecture, 13
Attributes, 49
Authorization, 247

C
Channels, 31
Checkout, 79
Contact, 27
Countries, 38
Coupons, 71
Currencies, 33
Customer and ShopUser, 36

E
E-Mails, 25
Environments, 6
Events, 29

F
Fixtures, 28

I
Installation, 9
Installation via Vagrant, 11
Introduction, 5
Introduction to Sylius REST API, 247
Inventory, 54

L
Locales, 32

O
Orders, 57

P
Payments, 75
Pricing, 51
Product Associations, 48
Product Reviews, 46
Products, 43
Promotions, 67

R
Resource Layer, 17

S
Search, 55
Shipments, 73
State Machine, 20
System Requirements, 8

T
Taxation, 63
Taxons, 52
Themes, 86
Translations, 23

U
Upgrading, 12

Z
Zones, 39

781


	The Book
	The Book

	The Customization Guide
	The Customization Guide

	Sylius Plugins
	Sylius Plugins

	The Cookbook
	The Cookbook

	The REST API Reference
	The REST API Reference

	The BDD Guide
	The BDD Guide

	The Contribution Guide
	The Contribution Guide

	Support
	Support

	Components & Bundles
	Components & Bundles


