Sylius

May 07, 2019

Contents

The Book 3
1.1 TheBoOK e e e e e e 5
The Customization Guide 91
2.1 The Customization Guide e e e e e e e 91
Sylius Plugins 135
3.1 Sylius Plugins o o o e e e e e e e e e e 135
The Cookbook 149
4.1 The Cookbook o . e e e e e e e e e 149
The REST API Reference 247
5.1 The REST APIReference o o i i i i e e e e e e e e e e s e 247
The BDD Guide 497
6.1 TheBDD Guide o i i i i e e 497
The Contribution Guide 515
7.1 The Contribution Guide e e e e e e e e 515
Support 547
.1 Support . . .o e e e e e e e e e 547
Components & Bundles 549
9.1 Components & Bundles e e 549

Sylius

S Sylius

Sylius is a modern e-commerce solution for PHP, based on Symfony Framework.

Note: This documentation assumes you have a working knowledge of the Symfony Framework. If you’re not familiar
with Symfony, please start with reading the Quick Tour from the Symfony documentation.

Tip: The Book, Customization Guide, REST API Reference, Cookbook, Contribution Guide and Behat Guide
are chapters describing the usage of the whole Sylius platform, on the examples for Sylius-Standard distribution.

For tips on using only some bundles of Sylius head to Bundles and Components docs.

Contents 1

http://sylius.com
http://symfony.com
http://symfony.com/doc/current/quick_tour

Sylius

2 Contents

CHAPTER 1

The Book

The Developer’s guide to leveraging the flexibility of Sylius
platform. The Book helps to understand how Sylius works.

introduction

What is Sylius about?

What are the
environments?

installation

How to install Sylius?

Sylius installation
via Vagrant

What are the
requirements?

How to
upgrade Sylius?

. Here you will find all the concepts used in the Sylius

http://docs.sylius.com/en/latest/book/introduction/index.html
http://docs.sylius.com/en/latest/book/installation/index.html

Sylius

architecture

Resources,
State Machines,
Events,
Translations,
Emails,
Contact,
Fixtures,
Events

configuration

Sylius basic concepts
configuration:
Channels,
Locales,
Currencies

customers

Customers
ShopUsers
AdminUsers
Addresses

products

Taxons,
Attributes,
Associations,
Reviews,
Inventory,
Pricing,
Search

4 Chapter 1. The Book

http://docs.sylius.com/en/latest/book/architecture/index.html
http://docs.sylius.com/en/latest/book/configuration/index.html
http://docs.sylius.com/en/latest/book/customers/index.html
http://docs.sylius.com/en/latest/book/products/index.html

Sylius

carts & orders

Orders,
Taxation,
Adjustments,
Promotions,
Coupons,
Payments,
Shipments,
Checkout

themes

What are themes?

When should |
use themes?

1.1 The Book

The Developer’s guide to leveraging the flexibility of Sylius. Here you will find all the concepts used in Sylius. The
Books helps to understand how Sylius works.

1.1.1 Introduction

Introduction aims to describe the philosophy of Sylius. It will also teach you about environments before you start
installing it.

Introduction

This is the beginning of the journey with Sylius. We will start with a basic insight into terms that we use in Sylius
Documentation.

Introduction to Sylius

Sylius is a game-changing e-commerce solution for PHP, based on the Symfony framework.

Philosophy

Sylius is completely open source (MIT license) and free, maintained by a diverse and creative community of developers
and companies.

‘What are our core values and what makes us different from other solutions?

» Components based approach

1.1. The Book 5

http://docs.sylius.com/en/latest/book/orders/index.html
http://docs.sylius.com/en/latest/book/themes/index.html

Sylius

* Unlimited flexibility and simple customization

* Developer-friendly, using latest technologies

* Developed using best practices and BDD approach
* Highest quality of code

And much more, but we will let you discover it yourself.

The Three Natures of Sylius

Sylius is constructed from fully decoupled and flexible e-commerce components for PHP. It is also a set of Symfony
bundles, which integrate the components into the full-stack framework. On top of that, Sylius is also a complete
e-commerce platform crafted from all these building blocks.

It is your choice how to use Sylius, you can benefit from the components with any framework, integrate selected
bundles into existing or new Symfony app or built your application on top of Sylius platform.

Sylius Platform

This book is about our full-stack e-commerce platform, which is a standard Symfony application providing the most
common webshop and a foundation for custom systems.

Leveraging Symfony Bundles

If you prefer to build your very custom system step by step and from scratch, you can integrate the standalone Symfony
bundles. For the installation instructions, please refer to the appropriate bundle documentation.

E-Commerce Components for PHP

If you use a different framework than Symfony, you are welcome to use Sylius components, which will make it much
easier to implement a webshop with any PHP application and project. They provide you with default models, services
and logic for all aspects of e-commerce, completely separated and ready to use.

Final Thoughts

Depending on how you want to use Sylius, continue reading The Book, which covers the usage of the full stack
solution, browse the Bundles Reference or learn about The Components.

Understanding Environments

Every Sylius application is the combination of code and a set of configuration that dictates how that code should
function. The configuration may define the database being used, whether or not something should be cached, or how
verbose logging should be. In Symfony, the idea of “environments” is the idea that the same codebase can be run using
multiple different configurations. For example, the dev environment should use configuration that makes development
easy and friendly, while the prod environment should use a set of configuration optimized for speed.

6 Chapter 1. The Book

https://scrutinizer-ci.com/g/Sylius/Sylius/

Sylius

Development

Development environment or dev, as the name suggests, should be used for development purposes. It is much slower
than production, because it uses much less aggressive caching and does a lot of processing on every request. However,
it allows you to add new features or fix bugs quickly, without worrying about clearing the cache after every change.

Sylius console runs in dev environment by default. You can access the website in dev mode via the /app_dev.php
file in the web/ directory. (under your website root)

Production

Production environment or prod is your live website environment. It uses proper caching and is much faster than
other environments. It uses live APIs and sends out all e-mails.

To run Sylius console in prod environment, add the following parameters to every command call:

$ bin/console —-—-env=prod --no-debug cache:clear

You can access the website in production mode via the /app . php file in your website root (web/) or just / path.
(on Apache)

Staging

Staging environment or staging is the last line before the shop will go to the production. Here you should test all
new features to ensure that everything works as expected. It’s almost an exact copy of production environment but
with different database and turned off e-mails.

To run Sylius console in st aging environment, add the following parameters to every command call:

$ bin/console —-—env=staging —--no-debug cache:clear

You can access the website in staging mode via the /app_staging.php file in your website root (web/) or just /
path. (on Apache)

Test

Test environment or test is used for automated testing. Most of the time you will not access it directly.

To run Sylius console in test environment, add the following parameters to every command call:

$ bin/console —--env=test cache:clear

Final Thoughts

You can read more about Symfony environments in this cookbook article.
e Introduction to Sylius
* Understanding Environments
e Introduction to Sylius

* Understanding Environments

1.1. The Book 7

http://symfony.com/doc/current/cookbook/configuration/environments.html

Sylius

1.1.2 Installation

The installation chapter is of course a comprehensive guide to installing Sylius on your machine, but it also provides
a general instruction on upgrading Sylius in your project.

Installation

The process of installing Sylius together with the requirements to run it efficiently.

System Requirements

Here you will find the list of system requirements that have to be adhered to be able to use Sylius. First of all have a

look at the requirements for running Symfony.

Read about the LAMP stack and the MAMP stack.
Operating Systems
The recommended operating systems for running Sylius are the Unix systems - Linux, MacOS.

Web server and configuration

In the production environment we do recommend using Apache web server 2.2.
While developing the recommended way to work with your Symfony application is to use PHP’s built-in web server.

Go there to see the full reference to the web server configuration.

PHP required modules and configuration

PHP version:

PHP extensions:

ed No specific configuration
exif No specific configuration
fileinfo | No specific configuration
intl No specific configuration

PHP configuration settings:

memory_limit | 1024M
date.timezone | Europe/Warsaw

Warning: Use your local timezone, for example America/Los_Angeles or Europe/Berlin. See http://php.net/
manual/en/timezones.php for the list of all available timezones.

8 Chapter 1. The Book

http://symfony.com/doc/current/reference/requirements.html
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://en.wikipedia.org/wiki/MAMP
http://symfony.com/doc/current/cookbook/configuration/web_server_configuration.html
http://php.net/manual/en/book.fileinfo.php
http://php.net/manual/en/book.exif.php
http://php.net/manual/en/book.fileinfo.php
http://php.net/manual/en/book.intl.php
http://php.net/manual/en/timezones.php
http://php.net/manual/en/timezones.php

Sylius

Database

By default, the database connection is pre-configured to work with a following MySQL configuration:

Note: Of course you may use any other RDBMS for instance PostgreSQL.

Access rights

Most of the application folders and files require only read access, but a few folders need also the write access for the
Apache/Nginx user:

e var/cache
* var/logs
¢ web/media

You can read how to set these permissions in the Symfony - setting up permissions section.

Installation

The Sylius main application can serve as an end-user app, as well as a foundation for your custom e-commerce
application.

Warning: This article assumes you’re familiar with Composer, a dependency manager for PHP. It also assumes
you have Composer installed globally.

Note: If you downloaded the Composer phar archive, you should use php composer.phar where this guide uses
composer.

Tip: If you prefer to work with Vagrant head to this guide.

Initiating A New Sylius Project

To create a new project using Sylius Standard Edition, run this command:

$ composer create-project sylius/sylius-standard acme

Note: Make sure to use PHP ~7.1. Using an older PHP version will result in installing an older version of Sylius.

1.1. The Book 9

http://symfony.com/doc/current/setup/file_permissions.html
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally

Sylius

This will create a new Symfony project in acme directory. When all the dependencies are installed, you’ll be asked
to fill the parameters.yml file via interactive script. Please follow the steps. After everything is in place, run the
following commands:

$ cd acme # Move to the newly created directory
$ php bin/console sylius:install

This package has the whole sylius/sylius package in vendors, so you can easily update it and focus on your
custom development.

Warning: During the sylius:install command you will be asked to provide important information, but
also its execution ensures that the default currency (USD) and the default locale (English - US) are set they can
be later on changed in the parameters.yml file. From now on all the prices will be stored in the database in
USD as integers, and all the products will have to be added with a base american english name translation.

Installing assets

In order to see a fully functional frontend you will need to install its assets.

Sylius already has a Gulpfile. js, therefore you just need to get Gulp using Yarn.

Note: We recommend using stable versions (*1.0.0) of Yarn.

Having Yarn installed go to your project directory and run:

’$ yarn install

And now you can use gulp for installing views, by just running a simple command:

’$ yarn run gulp

Although if you have Gulp installed globally then run just:

]$ gulp

Accessing the Shop

Tip: We strongly recommend using the Symfony built-in web server by running the php bin/console
server:start 127.0.0.1:8000 command and then accessing http://127.0.0.1:8000 in your web
browser to see the shop.

Note: The localhost’s 8000 port may be already occupied by some other process. If so you should try other ports,
like for instance: php bin/console server:start 127.0.0.1:8081 Want to know more about using a
built-in server, see here.

You can log in as an administrator, with the credentials you have provided during the installation process. Since now
you can play with your clean Sylius installation.

10 Chapter 1. The Book

http://gulpjs.com/
https://yarnpkg.com/lang/en/
https://yarnpkg.com/lang/en/
http://symfony.com/doc/current/cookbook/web_server/built_in.html

Sylius

Accessing the Administration Panel

Note: Have a look at the /admin url, where you will find the administration panel. Remember that you have to be
logged in as an administrator using the credentials provided while installing Sylius.

How to start developing? - Project Structure

After you have successfully gone through the installation process of Sylius-Standard you are probably going to start
developing within the framework of Sylius.

In the root directory of your project you will find these important subdirectories:

* app/config/ -here you will be adding the yaml configuration files including routing, security, state machines
configurations etc.

* var/logs/ - these are the logs of your application
* var/cache/ - this is the cache of you project
* src/ - this is where you will be adding all you custom logic in the AppBundle

* web/ - there you will be placing assets of your project

Tip: As it was mentioned before we are basing on Symfony, that is why we’ve adopted its approach to architecture.
Read more in the Symfony documentation. Read also about the best practices while structuring your project.

Contributing

Tip: If you would like to contribute to Sylius - please go to the Contribution Guide

Sylius installation via Vagrant

Warning: This article assumes you’re familiar with Composer, a dependency manager for PHP. It also assumes
you have Composer installed globally. Basic knowledge about Vagrant is also required, and of course installed
Vagrant.

What’s Vagrant?

Vagrant is a tool for building complete development environments, that in case of Sylius will help you to quickly have
full application running on your machine.

Tip: Learn more about Vagrant. Vagrant installation info.

1.1. The Book 11

http://symfony.com/doc/current/quick_tour/the_architecture.html
http://symfony.com/doc/current/best_practices/creating-the-project.html#structuring-the-application
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally
https://www.vagrantup.com/about.html
https://www.vagrantup.com/docs/installation/
https://www.vagrantup.com/docs/installation/
https://www.vagrantup.com/about.html
https://www.vagrantup.com/docs/installation/

Sylius

How to install Sylius using Vagrant?

2. Clone the Sylius/Vagrant repository into the /sylius/ directory:

$ git clone git@github.com:Sylius/Vagrant.git sylius

3. Move to the /sylius/ directory and build Vagrant:

$ cd sylius
$ vagrant up

4. Add an entry for sylius.test to the et c/hosts file:

etc/hosts
10.0.0.200 sylius.test www.sylius.test

From now on you will be able to access running Sylius application at http://sylius.test/app_dev.php.

Upgrading

Sylius is releasing new versions from time to time. Each release is supported with an UPGRADE file, which is meant
to help in the upgrading process, especially for the major versions, which can break the backwards compatibility.

Update the Sylius library version constraint by modifying the composer. json file:

"sylius/sylius": ""1.0@beta",

by

Then run composer update command:

’$ composer update sylius/sylius

If this results in a dependency error, it may mean that other Sylius dependencies also have to be upgraded. Using this
command may help you upgrade Sylius dependencies.

’$ composer update sylius/sylius --with-dependencies

If this does not help, it is a matter of debugging the conflicting versions and working out how your composer. json
should look after the upgrade.

Finally to make everything work check the UPGRADE file of Sylius for instructions.

One more important thing is running the database migrations:

$ bin/console doctrine:migrations:migrate

12 Chapter 1. The Book

https://github.com/Sylius/Vagrant
https://github.com/Sylius/Sylius/blob/1.0/UPGRADE-1.0.md

Sylius

Tip: Check if the migrations (more than 1) are in your app/migrations directory. If not, then replace the contents
of this directory with the migrations from the vendor/sylius/sylius/app/migrations/ directory.

After fixing the project according to the upgrade and having run the migrations you are done!

* System Requirements

e Installation

» Sylius installation via Vagrant

e Upgrading

* System Requirements

e Installation

» Sylius installation via Vagrant

* Upgrading

1.1.3 Architecture

The key to understanding principles of Sylius internal organization. Here you will learn about the Resource layer, state
machines, events and general non e-commerce concepts adopted in the platform, like E-mails or Fixtures.

Architecture

Before we dive separately into every Sylius concept, you need to have an overview of how our main application is
structured. In this chapter we will sketch this architecture and our basic, cornerstone concepts, but also some supportive
approaches, that you need to notice.

Architecture Overview

Before we dive separately into every Sylius concept, you need to have an overview of how our main application is
structured. You already know that Sylius is built from components and Symfony bundles, which are integration layers
with the framework.

All bundles share the same conventions for naming things and the way of data persistence. Sylius, by default, uses the
Doctrine ORM for managing all entities.

For deeper understanding of how Doctrine works, please refer to the excellent documentation on their official website.

Fullstack Symfony

)

Symfony

Sylius is based on Symfony, which is a leading PHP framework to create web applications. Using Symfony allows
developers to work better and faster by providing them with certainty of developing an application that is fully compat-
ible with the business rules, that is structured, maintainable and upgradable, but also it allows to save time by providing
generic re-usable modules.

Learn more about Symfony.

1.1. The Book 13

http://doctrine-orm.readthedocs.org/en/latest/
http://symfony.com/what-is-symfony

Sylius

Doctrine

é doctrine

Doctrine is a family of PHP libraries focused on providing data persistence layer. The most important are the object-
relational mapper (ORM) and the database abstraction layer (DBAL). One of Doctrine’s key features is the possibility
to write database queries in Doctrine Query Language (DQL) - an object-oriented dialect of SQL.

To learn more about Doctrine - see their documentation.

Twig

Twig is a modern template engine for PHP that is really fast, secure and flexible. Twig is being used by Symfony.

To read more about Twig, go here.

Architecture

On the below image you can see the symbolic representation of Sylius architecture.

14 Chapter 1. The Book

http://www.doctrine-project.org/about.html
http://twig.sensiolabs.org/

Sylius

Keep on reading this chapter to learn more about each of its parts: Shop, Admin, API, Core, Components and Bundles.

Division into Components, Bundles, Platform
Components

Every single component of Sylius can be used standalone. Taking the Taxat ion component as an example, its only
responsibility is to calculate taxes, it does not matter whether these will be taxes for products or anything else, it is
fully decoupled. In order to let the Taxation component operate on your objects you need to have them implementing
the TaxableInterface. Since then they can have taxes calculated. Such approach is true for every component of

1.1. The Book 15

Sylius

Sylius. Besides components that are strictly connected to the e-commerce needs, we have plenty of components that
are more general. For instance Attribute, Mailer, Locale etc.

All the components are packages available via Packagist.

Read more about the Components.

Bundles

These are the Symfony Bundles - therefore if you are a Symfony Developer, and you would like to use the Taxation
component in your system, but you do not want to spend time on configuring forms or services in the container. You
can include the TaxationBundle in your application with minimal or even no configuration to have access to all
the services, models, configure tax rates, tax categories and use that for any taxes you will need.

Read more about the Bundles.

Platform

This is a fullstack Symfony Application, based on Symfony Standard. Sylius Platform gives you the classic, quite
feature rich webshop. Before you start using Sylius you will need to decide whether you will need a full platform
with all the features we provide, or maybe you will use decoupled bundles and components to build something very
custom, maybe smaller, with different features. But of course the platform itself is highly flexible and can be easily
customized to meet all business requirements you may have.

Division into Core, Admin, Shop, Api
Core

The Core is another component that integrates all the other components. This is the place where for exam-
ple the ProductVariant finally learns that it has a TaxCategory. The Core component is where the
ProductVariant implements the TaxableInterface and other interfaces that are useful for its operation.
Sylius has here a fully integrated concept of everything that is needed to run a webshop. To get to know more about
concepts applied in Sylius - keep on reading 7he Book.

Admin

In every system with the security layer the functionalities of system administration need to be restricted to only some
users with a certain role - Administrator. This is the responsibility of our AdminBundle although if you do not need
it, you can turn it off. Views have been built using the SemanticUI.

Shop

Our ShopBundle is basically a standard B2C interface for everything that happens in the system. It is made mainly
of yaml configurations and templates. Also here views have been built using the SemanticUI.

16 Chapter 1. The Book

https://packagist.org/
http://semantic-ui.com/
http://semantic-ui.com/

Sylius

Api

Our API uses the REST approach. Since our controllers are format agnostic they have become reusable in the APL
Therefore if you request products in the shop frontend you are using exactly the same action as when you are placing
the api request. Read more about our API in the Sylius API Guide.

Third Party Libraries

Sylius uses a lot of libraries for various tasks:
e Payum for payments
¢ KnpMenu - for shop and admin menus
* Gaufrette for filesystem abstraction (store images locally, Amazon S3 or external server)
» Imagine for images processing, generating thumbnails and cropping
» Pagerfanta for pagination

e Winzou State Machine - for the state machines handling

Resource Layer

We created an abstraction on top of Doctrine, in order to have a consistent and flexible way to manage all the resources.
By “resource” we understand every model in the application. Simplest examples of Sylius resources are “product”,

CLINY3 9% <.

“order”, “tax_category”,

ELINY3 CLINNT3

promotion”, “user”, “shipping_method” and so on...
There are two types of resources in Sylius:
* registered by default - their names begin with sylius. » for example: sylius.product

e custom resources, from your application which have a separate convention. ~We place them under
sylius_resource: resource_name: inthe config.yml. For these we recommend using the naming
convention of app . » for instance app .my_entity.

Sylius resource management system lives in the SyliusResourceBundle and can be used in any Symfony project.

Services

For every resource you have four essential services available:
* Factory
e Manager
* Repository
* Controller

Let us take the “product” resource as an example. By default, it is represented by an object of a class that implements
the Sylius\Component\Core\Model\ProductInterface.

Factory

The factory service gives you an ability to create new default objects. It can be accessed via the sylius.factory.product
id (for the Product resource of course).

1.1. The Book 17

https://github.com/Payum/Payum
http://symfony.com/doc/current/bundles/KnpMenuBundle/index.html
https://github.com/KnpLabs/Gaufrette
https://github.com/liip/LiipImagineBundle
https://github.com/whiteoctober/Pagerfanta
https://github.com/winzou/StateMachineBundle

Sylius

<?php

public function myAction()
{

Sfactory = S$this->container->get ('sylius.factory.product');

/+* @var ProductInterface Sproduct x*x/

Sproduct = S$factory->createNew () ;

Note: Creating resources via this factory method makes the code more testable, and allows you to change the model
class easily.

Manager

The manager service is just an alias to appropriate Doctrine’s ObjectManager and can be accessed via the
sylius.manager.product id. API is exactly the same and you are probably already familiar with it:

<?php

public function myAction ()

{

Smanager = Sthis->container->get ('sylius.manager.product');

// Assuming that the Sproductl exists in the database we can perform such,_
—operations:
Smanager->remove ($Sproductl);

// If we have created the Sproduct2 using a factory, we can persist it in the_
—database.
Smanager->persist (Sproduct?2) ;

// Before performing a flush, the changes we have made, are not saved. There 1is_
—only the S$Sproductl in the database.
Smanager->flush(); // Saves changes in the database.

//After these operations we have only Sproduct2 in the database. The S$productl,,
—~has been removed.

}

Repository

Repository is defined as a service for every resource and shares the API with standard Doctrine ObjectRepository. It
contains two additional methods for creating a new object instance and a paginator provider.

The repository service is available via the sylius.repository.product id and can be used like all the repositories you
have seen before.

<?php

public function myAction()

{

(continues on next page)

18 Chapter 1. The Book

http://www.doctrine-project.org/api/common/2.4/class-Doctrine.Common.Persistence.ObjectManager.html

Sylius

(continued from previous page)

Srepository = $this->container—->get ('sylius.repository.product');

Sproduct = Srepository->find(4); // Get product with id 4, returns null if not,

— found.
Sproduct = Srepository->findOneBy (['slug' => 'my-super-product'l]); // Get one_
—product by defined criteria.

Sproducts = S$repository->findAll(); // Load all the products!
Sproducts = $repository->findBy(['special' => truel); // Find products matching,,
—some custom criteria.

}

Tip: An important feature of the repositories are the add (Sresource) and remove ($resource) methods,
which take a resource as an argument and perform the adding/removing action with a flush inside.

These actions can be used when the performance of operations may be neglected. If you are willing to perform
operations on sets of data we are suggesting to use the manager instead.

Every Sylius repository supports paginating resources. To create a Pagerfanta instance use the createPaginator
method:

<?php

public function myAction (Request S$Srequest)
{

Srepository = $this->container->get ('sylius.repository.product');

Sproducts = Srepository->createPaginator();
Sproducts—->setMaxPerPage (3) ;
Sproducts->setCurrentPage (Srequest->query->get ('page', 1));

// Now you can return products to template and iterate over it to get products,
—from current page.

}

Paginator can be created for a specific criteria and with desired sorting:

<?php

public function myAction (Request Srequest)
{

Srepository = $this->container->get ('sylius.repository.product');
Sproducts = Srepository->createPaginator (['foo' => true], ['createdAt' => 'desc
='1);

Sproducts->setMaxPerPage (3);
Sproducts—->setCurrentPage ($Srequest->query->get ('page', 1));

Controller

This service is the most important for every resource and provides a format agnostic CRUD controller with the fol-
lowing actions:

1.1. The Book 19

https://github.com/whiteoctober/Pagerfanta

Sylius

[GET] showAction() for getting a single resource

[GET] indexAction() for retrieving a collection of resources

[GET/POST] createAction() for creating new resource

[GET/PUT] updateAction() for updating an existing resource

[DELETE] deleteAction() for removing an existing resource

As you see, these actions match the common operations in any REST API and yes, they are format agnostic. This
means, all Sylius controllers can serve HTML, JSON or XML, depending on what you request.

Additionally, all these actions are very flexible and allow you to use different templates, forms, repository methods
per route. The bundle is very powerful and allows you to register your own resources as well. To give you some idea
of what is possible, here are some examples!

Displaying a resource with a custom template and repository methods:

routing.yml
app_product_show:
path: /products/{slug}
methods: [GET]
defaults:
_controller: sylius.controller.product:showAction
_sylius:
template: AppStoreBundle:Product:show.html.twig # Use a custom template.
repository:
method: findForStore # Use a custom repository method.
arguments: [$slug] # Pass the slug from the url to the repository.

Creating a product using custom form and a redirection method:

routing.yml
app_product_create:
path: /my-stores/{store}/products/new

methods: [GET, POST]

defaults:
_controller: sylius.controller.product:createAction
_sylius:

form: AppStoreBundle/Form/Type/CustomFormType # Use this form type!
template: AppStoreBundle:Product:create.html.twig # Use a custom template.
factory:
method: createForStore # Use a custom factory method to create a_
—product.

arguments: [Sstore] # Pass the store name from the url.
redirect:

route: app_product_index # Redirect the user to their products.

parameters: [Sstore]

All other methods have the same level of flexibility and are documented in the Resource Bundle Guide.

State Machine

In Sylius we are using the Winzou StateMachine Bundle. State Machines are an approach to handling changes occur-
ring in the system frequently, that is extremely flexible and very well organised.

Every state machine will have a predefined set of states, that will be stored on an entity that is being controlled by it.
These states will have a set of defined transitions between them, and a set of callbacks - a kind of events, that will
happen on defined transitions.

20 Chapter 1. The Book

https://github.com/winzou/StateMachineBundle

Sylius

States

States of a state machine are defined as constants on the model of an entity that the state machine is controlling.

How to configure states? Let’s see on the example from Checkout state machine.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state machine:
sylius_order_checkout:
list of all possible states:
states:
cart: ~
addressed: ~
shipping selected: ~
payment_selected: ~
completed: ~

Transitions

On the graph it would be the connection between two states, defining that you can move from one state to another
subsequently.

How to configure transitions? Let’s see on the example of our Checkout state machine. Having states configured we
can have a transition between the cart state to the addressed state.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state_machine:
sylius_order_checkout:
transitions:
address:
from: [cart, addressed, shipping_selected, payment_selected] # here_,
—you specify which state is the initial
to: addressed # there,,
—you specify which state 1is final for that transition

Callbacks

Callbacks are used to execute some code before or after applying transitions. Winzou StateMachineBundle adds the
ability to use Symfony services in the callbacks.

How to configure callbacks? Having a configured transition, you can attach a callback to it either before or after the
transition. Callback is simply a method of a service you want to be executed.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state_machine:
sylius_order_checkout:
callbacks:
callbacks may be called before or after specified transitions, in,,
—the checkout state machine we've got callbacks only after transitions

after:
sylius_process_cart:
on: ["address", "select_shipping"”, "select_payment"]
do: ["@sylius.order_processing.order_processor", "process"]
args: ["object"]

1.1. The Book 21

Sylius

Configuration

In order to use a state machine, you have to define a graph beforehand. A graph is a definition of states, transitions
and optionally callbacks - all attached on an object from your domain. Multiple graphs may be attached to the same
object.

In Sylius the best example of a state machine is the one from checkout. It has five states available: cart,
addressed, shipping_selected,payment_selectedand completed - which can be achieved by apply-
ing some transitions to the entity. For example, when selecting a shipping method during the shipping step of checkout
we should apply the select_shipping transition, and after that the state would become shipping_selected.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state _machine:
sylius_order_checkout:
class: "S$sylius.model.order.class%" # class of the domain object - in our,
—case Order
property path: checkoutState
graph: sylius_order_checkout

state_machine_class: "%sylius.state_machine.class%"
list of all possible states:
states:

cart: ~

addressed: ~

shipping_selected: ~
payment_selected: ~
completed: ~
list of all possible transitions:
transitions:
address:
from: [cart, addressed, shipping_selected, payment_selected] # here,
—you specify which state is the initial
to: addressed # there_,
—you specify which state 1is final for that transition
select_shipping:
from: [addressed, shipping_selected, payment_selected]
to: shipping_selected
select_payment:
from: [payment_selected, shipping_selected]
to: payment_selected
complete:
from: [payment_selected]
to: completed
list of all callbacks:
callbacks:
callbacks may be called before or after specified transitions, in the,
—checkout state machine we've got callbacks only after transitions
after:
sylius_process_cart:
on: ["address", "select_shipping", "select_payment"]
do: ["@sylius.order_processing.order_processor", "process"]
args: ["object"]
sylius_create_order:
on: ["complete"]
do: ["@sm.callback.cascade_transition", "apply"]
args: ["object", "event", "'create'", "'sylius_order'"]
sylius_hold_ inventory:
on: ["complete"]

(continues on next page)

22 Chapter 1. The Book

Sylius

(continued from previous page)

do: ["@sylius.inventory.order_inventory_operator", "hold"]
args: ["object"]
sylius_assign_token:
on: ["complete"]
do: ["@sylius.unique_id_based_order_token_assigner",
—"assignTokenValueIfNotSet"]
args: ["object"]

Learn more

¢ Winzou StateMachine Bundle

» Customization guide: State machines

Translations

Sylius uses the approach of personal translations - where each entity is bound with a translation entity, that has
it’s own table (instead of keeping all translations in one table for the whole system). This results in having the
ProductTranslation class and sylius_product_translation table for the Product entity.

The logic of handling translations in Sylius is in the ResourceBundle

The fields of an entity that are meant to be translatable are saved on the translation entity, only their getters and setters
are also on the original model.

Let’s see an example:

Assuming that we would like to have a translatable model of a Supplier, we need a Supplier class and a Supplier-
Translation class.

<?php
namespace AppBundle\Entity;
use Sylius\Component\Resource\Model\AbstractTranslation;

class SupplierTranslation extends AbstractTranslation
{
J ok k
* @var string
*/
protected Sname;

VAT

* @return string

*/
public function getName ()
{

return Sthis->name;

/ x*
* @param string S$name
*/
public function setName ($name)

(continues on next page)

1.1. The Book 23

https://github.com/winzou/StateMachineBundle

Sylius

(continued from previous page)

Sthis->name = S$name;

The actual entity has access to its translation by using the TranslatableTrait which provides the
getTranslation () method.

Warning: Remember that the Translations collection of the entity (from the TranslatableTrait) has to be initial-
ized in the constructor!

<?php
namespace AppBundle\Entity;

use Sylius\Component\Resource\Model\TranslatableInterface;
use Sylius\Component\Resource\Model\TranslatableTrait;

class Supplier implements TranslatableInterface
{

use TranslatableTrait {
__construct as private initializeTranslationsCollection;

public function __ construct ()

{

Sthis—->initializeTranslationsCollection();

J ok k
* @return string
*/
public function getName ()

{

return S$this->getTranslation()->getName () ;
}
J ok k
* @param string Sname
*/
public function setName (Sname)
{
Sthis->getTranslation () ->setName ($name) ;

Fallback Translations

The get Translation () method gets a translation for the current locale, while we are in the shop, but we can also
manually impose the locale - get Translation ('pl_PL') will return a polish translation if there is a translation
in this locale.

But when the translation for the chosen locale is unavailable, instead the translation for the fallback locale (the one

24 Chapter 1. The Book

Sylius

that was either set in config.yml or using the setFallbackLocale () method from the TranslatableTrait on
the entity) is used.

How to add a new translation programmatically?

You can programmatically add a translation to any of the translatable resources in Sylius. Let’s see how to do it on the
example of a ProductTranslation.

// Find a product to add a translation to it

/+# @var ProductInterface Sproduct =/
Sproduct = Sthis->container->get ('sylius.repository.product')->findOneBy (['code' =>
—'radiohead-mug-code']);

// Create a new translation of product, give it a translated name and slug in the_
—chosen locale

/** @var ProductTranslation Stranslation %/
Stranslation = new ProductTranslation();

Stranslation—->setLocale('pl_PL'");
Stranslation—>setName ('Kubek Radiohead');
Stranslation->setSlug('kubek-radiohead');

// Add the translation to your product
Sproduct—->addTranslation (Stranslation);

// Remember to save the product after adding the translation
Sthis->container->get ('sylius.manager.product')->flush ($Sproduct);

Learn more

e Resource - translations documentation

* Locales - concept documentation

E-Mails

Sylius is sending various e-mails and this chapter is a reference about all of them. Continue reading to learn what e-
mails are sent, when and how to customize the templates. To understand how e-mail sending works internally, please
refer to SyliusMailerBundle documentation. And to learn more about mailer services configuration, read the dedicated
cookbook.

User Confirmation

Every time a customer registers via the registration form, a user registration e-mail is sent to them.
Code: user_registration

The default template: SyliusShopBundle:Email:userRegistration.html.twig
You also have the following parameters available:

e user: Instance of the user model

1.1. The Book 25

Sylius

Email Verification

When a customer registers via the registration form, besides the User Confirmation an Email Verification is sent.
Code: verification_token

The default template: SyliusShopBundle:Email:verification.html.twig

You also have the following parameters available:

e user: Insta